System Design Methods for Simultaneous
Optimal Control of Combustion Instabilities
and Efficiency

Final Report
ONR Contract N00014-99-1-0752
September 30, 2002

Principal Investigators:

William T. Baumann
William R. Saunders
Uri Vandsburger

College of Engineering
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

DISTRIBUTION STATEMENT A:
Apprqved for Public Release - .
Distribution Unlimited

20031010 090




Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this coltection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway.,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 30, 2002 Final Report: 1 May 1999 to 30 Sept 2002
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
System Design Methods for Simultaneous Optimal Control of Combustion G
Instabilities and Efficiency N00014-99-1-0752

6. AUTHOR(S)
W. T. Baumann, W.R. Saunders, U. Vandsburger, A. Greenwood, M. Vaudrey, M. Carson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY VACCG-ONR-1
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

SPONSORING AGENCY MONITORING AGENCY
OFFICE OF NAVAL RESEARCH OFFICE OF NAVAL RESEARCH SPONSOR: ONR 251 MONITOR: N66020
Ballston Centre Tower One 100 Alabama Street, Suite 4R15
800 North Quincy Street Atlanta, GA 30303-3104

Arlington, VA 22217-5600

11. SUPPLEMENTARY NOTES

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

The work under this contract primarily involved the design, analysis and testing of control algorithms aimed
at the suppression of thermoacoustic instabilities and the optimization of combustor performance. Three
different types of algorithms were considered in this work: Pattern search, explicit gradient, and least-mean-
square based feedback, which we have designated filtered-E. The algorithms are listed in order of increasing
speed and increasing amount of a priori information required. Both pattern search and explicit gradient
algorithms are useful for the optimization of combustion performance as well as the suppression of
thermoacoustic instabilities. Filtered-E is intended solely for the fast suppression of thermoacoustic
instabilities. All of the algorithms were successful in suppressing thermoacoustic instabilities in an
experimental combustor. In addition, we provide an analysis of the mechanism for achieving control using on-
off actuators pulsed subharmonically, validate the analysis with experimental results and propose a variable-
subharmonic controller. Control systems using on-off actuation can be adaptively tuned using pattern search or
explicit gradient algorithms with little modification. The filtered-E algorithm has also been effective when
applied to on-off actuation, even though the implicit gradient is not quite correct.

14. SUBJECT TERMS I5. NUMBER OF PAGES

Thermoacoustic instabilities, Pulsed control, Optimization algorithms, Control algorithms

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL




1

Table of Contents

Introduction

2 Pattern Search Algorithms

2.1 Introduction

2.2 Theory

2.3 Implementation and Robustness Issues
2.4 Experimental Results

2.5 References

Explicit Gradient Algorithms

3.1 Introduction

3.2 Theory

3.3 Implementation and Robustness Issues
3.4 Experimental Results

3.5 References

Filtered-E Based Algorithms

4.1 Introduction

4.2 Adaptive Feedback Control

4.3 Analysis of Adaptive Feedback Applied to Self-Excited Systems
4.4 Simulation, Experimental Results, and Actuator Authority
4.5 Stability and Operating Constraints of Adaptive LMS Feedback Control

4.6 Practical Applications and Considerations

4.7 Simulation

4.8 References

5 Pulsed Control

22

23

23

23

24

25

37

38

38

39

41

46

54

61

65

69

72




6

5.1 Introduction

5.2 Analysis

5.3 Controller Implementation
5.4 Experimental Results

5.5 Conclusion

5.6 References

Conclusions

73

79

81

89

90

91




1 Introduction

1.1 Overview

The work under this contract primarily involved the design, analysis and testing of
control algorithms aimed at the suppression of thermoacoustic instabilities and the
optimization of combustor performance. Although these two problems are similar in that
they can be cast as optimization problems, they have significant time scale differences:
Thermoacoustic instabilities must be suppressed quickly, on the order of a second, whereas
combustor performance optimization can take place on the timescale of minutes. In both
cases, very little is known about low-order, control-oriented modeling of these processes.
This necessitated the use of simple adaptive algorithms that require very little a-priori
information about the system.

Three different types of algorithms were considered in this work: Pattern search,
explicit gradient, and least-mean-squares (LMS) based feedback, which we have designated
filtered-E. The algorithms are listed in order of increasing speed and increasing amount of a
prioti information required. Both pattern search and explicit gradient algorithms are useful
for both the optimization of combustion performance and the suppression of
thermoacoustic instabilities. Filtered-E is intended solely for the fast suppression of
thermoacoustic instabilities.

In the pattern search category, this work investigates both the Hooke and Jeeves, and
the Rosenbrock algotithms. These algorithms can operate with a controller of any structure
and systematically perturb the free parameters until further improvement is not possible.
The advantage of pattern search algorithms is that they are capable of searching very rough
petformance surfaces and require almost no a priori information. In addition, they should
never allow the controller to remain in regions of the parameter space that degrade
petformance below the uncontrolled case. The major disadvantage is that they can be
slower than other algorithms since they make no assumptions about the space they ate
searching. Hence, pattern search is ideally suited to slow optimization of combustion
performance. In addition, we have found that it performs quite well for suppressing
instabilities.

With the explicit gradient algorithms, three variations were considered: 2 simple
time-averaged gradient (TAG), a gradient with linesearch, and a conjugate gradient method.
These algorithms all explicitly compute 2 gradient of the performance with respect to the
free parameters. For smooth performance surfaces, they ate faster than the pattern search
algorithms. Their main disadvantage is the potential to get stuck in a local minimum. This
problem can be alleviated to some degree by including a random search component in the
algorithm after a minimum has been achieved. These algorithms were found to be effective
for suppressing combustion instabilities and will also be effective for optimization of
combustion petformance when the performance surface is not too rough.

The final type of algorithm considered was an LMS-based feedback configuration.
The advantage of LMS is that it uses a stochastic gradient approach and is faster than the
explicit gradient algorithms since there is no need to explicitly compute the gradient. The
disadvantage is that the implicit gradient computation requitres knowledge of a linearized
model of the control-to-etror response. This model must be determined in real time prior to
starting the LMS iterations. This algorithm is well suited for the suppression of combustion




instabilities. The requirement of a linearized control-to-ertor model probably makes it
unsuitable for combustion performance optimization, as the required model may be difficult
to identify in real time.

Most control system analysis assumes that proportional actuation is available. In the
combustion field, it is not uncommon to use on-off actuation in the form of fuel injectors.
Control systems using on-off actuators have been effective in suppressing combustion
instabilities, but there was no analysis of how such systems worked. We provide an analysis
of the mechanism for achieving control using on-off actuators and validate the analysis with
experimental results. Control systems using on-off actuation can be adaptively tuned using
pattern search or explicit gradient algorithms with little modification. The filtered-E
algorithm has also been effective when applied to on-off actuation, even though the implicit
gradient is not quite correct.

The following chapters provide a detailed description and experimental results for
each class of algorithm. Attention is paid to the type of a priori information required and
how this information can be obtained. In addition, robustness issues are examined to
understand potential problems that could occur in using these algorithms. Our experience in
using these algorithms to suppress combustion instabilities has shown that all three types of
algorithms are effective for adaptive control of these instabilities.
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2 Pattern Search Algorithms

2.1Introduction

This chapter discusses the work done with algorithms that use a pattern search for
the suppression of thermoacoustic instabilities. The algorithms were used to adapt the
weights of a two-tap FIR filter. In general, these algorithms make perturbations along
specified search directions, and compute the corresponding change in the cost function.
The algorithms then make a decision about future perturbations and search directions based
on these computations.

2.2 Theory

2.2.1 Hooke and Jeeves Pattern Search with Line Search

The first pattern search algorithm discussed here is that of Hooke and Jeeves. The
original algorithm proposed by Hooke and Jeeves was a strict pattern search along the
weight directions. The version incorporated in this work is an adapted version that uses
both a pattern search and a line search along the successful directions. Bazaraa and Shetty[2]
summarized the Hooke and Jeeves Pattern Search as follows:

Initialization Step: d,,...,d, are the coordinate directions. The scalar € > 0 is
used to terminate the algorithm. Also choose an initial step size, A > €, and an

acceleration factor, & > 0. Choose a starting point x,, lety, = x,, letk = j =1, and
g0 to main step.

Main Step:
1 If f(y;+Ad;)< f(y,), the trial is deemed a success; let
Y =Y;+Ad;, and go to step 2. If f(y, +Ad ;)2 f(y,), the trial is
deemed a failure. In this case, if f(y, ~Ad,) < f(y,), let

Yin =Y, —Ad,, and go to step 2; if Sy, —Ad)2 f(y)), let Y=Y,
and go to step 2.
2. If j<n,replacebyj+ 1, and repeat step 1. Otherwise go to step 3 if

S3a) < f(x,), and go tostep 4if f(y,,)2 f(x,).

3. Letx;,, =y,,,andlet y, =x,,, + a(xk+I - xk). Replace k with k + 1, let
) = 1, and go to step 1.

4. If A <¢g, stop; x, is the solution. Otherwise replace A by A/2. Let
V1= X5 Xy = X, replace k by k + 1, let j =1, and repeat step 1.




This algorithm can be thought of in two separate phases: an exploratory search
(tepresented by steps 1 and 2 above) and a pattern search (step 3). The exploratory search
successively perturbs along each weight direction and tests the resulting performance. The

pattern search steps along the (x,,, — ;) direction, or the direction between the last two
points selected by the exploratory search. When perturbations along both the positive and
negative weight direction do not result in enhanced performance, the perturbation size is
decreased. When the perturbation size is less than a predetermined termination factor, €, the
algorithm stops and assumes an optimal solution.

2.2.2 Method of Rosenbrock
The method of Rosenbrock uses a pattern search technique to evaluate functional
values along the search directions. An acceleration term is included to increase or decrease
the step size as the algorithm progresses. Bazaraa and Shetty[2] summarized the Hooke and
Jeeves Pattern Search as follows:

Initialization Step: d,,...,d, ate the coordinate directions and A,,...,A, >0 be the

initial step sizes along these directions. The scalar € > 0 is used to terminate the
algorithm. Let a > 1 be the expansion factor and S € (— 1,0) be the contraction

factor. Choose a starting point x,, lety, = x, letk=j=1,let A, = A ; for each,

and go to main step.
Main Step:
1. If f(y,+A,d)< f(y,), the trial is deemed a success; let

Vim=y,+Ad and A, =aA . If fy,+4,d,)2 f(y;), the trial is
deemed a failure; let y,,, =y, and A, = fA,. Ifj <n,replacejbyj+1,
and repeat step 1. Otherwise, if j = n, go to step 2.

2. If f(y,.)<f(), thatisif any of the n trials of step 1 were successful, let
Y\ = Vou»setj = 1, and repeat step 1. Consider the case when
f(y,..) = f(3,), that is when each of the n trials in step 1 was a failure. If
f(r,..) < f(x,), that is if at least one trial was successful during iteration k,
go to step 3. If f(¥,,) = f(x,), stop with x, as an estimate for the optimal
solution if 'A j‘ < ¢ for each j; otherwise, let y, = y,,;,j = 1, and go to step
1.

3. Letx,, =y, If nxkﬂ - X H < &, stop with x,,, as an optimal solution.
Otherwise, compute A,,...,4, from the relationship x,,, —x, = Z/ljd I
Jj=1
form a new set of directions for the Gram-Schmidt procedure, let A, = A ;

for each j, let y, = x,,,, teplace k with k +1, let j =1, and repeat step 1.




The Gram-Schmidt procedure used in the Rosenbrock algorithm for calculating new

directions can be expressed as:

d/
413 24,
i=j
aj .
%= aj'jz-l(ajlgi);i
— b,
d =—L
" e

if4,=0
if 4,20
if j=1
ifj22

2.1)

2.2)

(2.3)

This algorithm begins with searches along the weight directions. If a perturbation

results in a lower MSE, the expansion term, @, is used to increase the step size in that
direction. If a higher MSE results, the contraction term, B, reverses the sign of the

perturbation and decreases the magnitude. This is repeated until a failure occurs along all
directions, which leads to the development of new directions through the Gram-Schmidt

procedure.

The Gram-Schmidt procedure takes the mutually orthogonal, linearly independent
weight directions, d,,...,d, , and forms new directions 6—{1 ,...sd,. The result is a new set of

linearly independent orthogonal search directions. The Gram-Schmidt procedure forms a
special case of conjugate directions, and thus the Rosenbrock algotithm behaves similar to a

conjugate direction method in its convergence upon a quadratic function.

2.3Robustness and Implementation Issues

For the above algorithms, the function that was to be minimized was the mean

squared error, defined as

N
M%:lZéw)
\ e

2.4)

where ¢ is the error signal of interest and N is the number of samples over which the error is

averaged.

For the pattern search algorithms, the MSE was made to be mean-zero data by

subtracting the mean value from each element prior to squaring the signal. This was done

because it was determined that a slight shift in the DC value could mask changes in the

amplitude of the signal.




The Hooke and Jeeves algorithm was terminated if the MSE was below a threshold
value. This was also incorporated to prevent the algorithm from making decisions based on
signals not related to the initial limit cycle, such as noise from the pressure transducer.

The pattern search algorithms described above are functions of two very important
parameters: the integration length, N, and the perturbation size, 8. As mentioned earlier, the
integration length is the number of samples over which the MSE is averaged. The
perturbation size corresponds to the change in the weights during the pattern search. These
parameters are system-dependent, thus should be chosen automatically to insure the
robustness of the minimization process.

The value of the MSE approaches the true mean value as the integration length
approaches infinity. Because the algorithms are run in real-time and there is a desire to
minimize convergence time, the goal is to find a minimum integration length while
maintaining an accurate estimate of the MSE. This procedure involved reading the etror
signal and computing the MSE at each sample. The past # MSE values were then evaluated,
where 7 is a specified evaluation range. When the maximum and minimum MSE values
within this range fell within a certain percentage of each other, the current number of
samples was considered an adequate integration length. If this condition was not met, the
integration length was increased and the next MSE value was computed. The result of this is
a transient response similar to a second order system. An example of this procedure is
shown in Figure 2.1, which is a plot of the MSE calculation versus the sample number for an
electronic simulation. At approximately 300 samples, the calculation of the MSE has
reached a near steady-state value.

x 107 Mean squared error transient hehavior during Tuning phase
4 ] L] T T T T T

35¢ E

mean squared error
N
T
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0 1 1 1 1 1 L
A0 a 50 100 150 200 250 300 350
Sample

Figure 2.1 Mean squared error transient behavior during Tuning phase

It was necessary for the perturbation size to be large enough to cause a measurable
change in the signal, yet not so large as to drive the system unstable once control was
achieved. The initial perturbation size was chosen to be telatively small. The first weight
was perturbed and the change in the MSE was measured. If the percent change was below a
minimum value, the perturbation size was increased. If the change exceeded a maximum




value, it was decreased. Thus, when the change fell into a certain range, it was deemed
acceptable. In practice, the acceptable range was a 20 — 25% change in the MSE.

2.4Experimental Results

2.4.1 Experimental Setup

The algorithms discussed above were used in the stablization of an open-closed tube
combustor, commonly referred to as a Rijke tube. A ceramic honeycomb was used to
stabilize a premixed air-methane flame located at one-half the length of the tube. The
interaction between the heat release rate and the pressure fluctuations in the tube form a
self-excited loop. Rayleigh’s criterion predicts an instability of the second acoustic mode of
the tube at a frequency of approximately 180 Hz, and that instability is observed
experimentally.

A SenSym resistive-based pressute transducer was used to collect sound pressure
data from this 180 Hz instability. This signal was sent through a strain gauge amplifier, then
was band-pass filtered between 160 and 200 Hz. The signal was then sent to a dSpace
DS1103 DSP board, sampling at 1600 Hz, and used by the minimization algorithms to
determine adaptive filter coefficients. The output was passed through a smoothing filter at
185 Hz and into an amplifier. The amplified signal was delivered to a 3” speaker that was

used to control the instability in the tube. A schematic of this system can be seen in Figure
2.2.

Rijke Tube

Lowpass
Smoothing
Amplifier Filter

Loud Speaker
& :D < i FL-LP
185 Hz

Pressure
Transducer

dSpace
Digital
FL-BP
||> 163-200 Hz Controller

Strain Gauge Bandpass Filter
Amplifier

Figure 2.2 Rijke Tube Experimental Set-Up

Control tests were done in one of two actuation methods: proportional, which will
be discussed later in the chapter, or pulsed (on-off) actuation signals, which is discussed in




more detail in Chapter 5. Proportional actuation involved a control signal that is
proporttional to the input pressure signal. Thus, the control effort is initially high, and
decreases as control is achieved. Pulsed control, on the other hand, involves control signals
of fixed amplitude. The pulsed experiments also include the use of sub-harmonic control.
This is done by forcing the actuator at frequencies that are integer divisions of the
fundamental instability frequency. Control is still possible because these signals contain
harmonic component at the instability frequency. Sub-harmonic control may be used to
extend component life by exposing the actuator to fewer cycles.

2.4.2 Performance using Proportional Actuation on Rijke tube

There were three sepatate operating conditions on the Rijke tube that were explored,
each have a total flow of approximately 128 cc /sec. The first was a condition in which the
tube was at the lower end of the instability range. The equivalence ratio for this case was, @
= (0.544. The second condition was at a higher equivalence ratio of @ = 0.582. The final
condition was at an equivalence ratio, ® = 0.641, could not be successfully control due to
restrictions in the actuator authority which are discussed at the end of this section. Because
of this authority issue, higher equivalence ratio conditions were not investigated.

Because the Rijke tube is basically a single frequency noise cancellation problem,
only two filter coefficients are required to control the phase and magnitude of the filter.
This is shown through the equations for the magnitude and phase of the filter.

/G =tan"!| — [Wo sin(wT) +w, sin(ZwT)]
- [w0 cos(wT)+w, cos(2a)T)] (2.5)
G| = y/[w, cos(@T) + w, cos(2aT)] +[w, sin(aT) + w, sin2eT)f 2.6)

It is desired to constrain the magnitude and phase of the filter at the instability
frequency such that the control signal will destructively interfere with the pressure
oscillations generated from the instability. Because there is a single frequency that is relevant
in this case, there is only a single magnitude and phase to constrain. As can be seen from the
above equations, this results in the need for a filter with only two taps. Thus, unless
otherwise stated, it can be assumed that two weights have been used to obtain the following
results.

24.21 Low Equivalence Ratio Case

The first of the operating conditions for the Rijke tube was a relatively low
equivalence ratio of 0.544 with limit cycle frequency of 178 Hz at a level of 4.65 dBVrms.
The power spectrum of this operating condition can be seen in Figure 2.3 and traces of the
pressure oscillations are shown in Figure 2.4.
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Figure 2.3 Power spectrum of Rijke tube, ® = 0.544
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Figure 2.4 Limit cycle oscillations of Rijke Tube, ® = 0.544

The tuning phase that was described in Section 2.3 was used to determine acceptable
values of 8, and N, the results of which can be seen in Table 2-1.
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Table 2-1: Parameter Values for the ® = (0.544

Equivalence Ratio, ® 0.544
Perturbation Size, 8 0.1644
Integration Length, N 402 samples

For each algorithm, data for the decay envelope, the magnitude and phase of the
filter, and the power spectra of the controlled pressure in the tube were collected.

The results for the first of the pattern search algorithms, Hooke and Jeeves, can be seen in
Figure 2.5 and Figure 2.6.

Hooke and Jeeves on Rijke Tube
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Figure 2.5 Phase and magnitude of filter for Hooke and Jeeves algorithm, ® = 0.544
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Figure 2.6 Power spectrum of Hooke and Jeeves-controlled Rijke Tube, ® = 0.544

The transient response for the Hooke and Jeeves pattern search does not show a
smooth convergence. This is because the algorithm is systematically searching the weight
space, and thus may take steps in the non-optimal direction. .

The results for the final pattern search algorithm, Rosenbrock, are shown in Figure
2.7 and Figure 2.8.
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Figure 2.7 Phase and magnitude of filter for Rosenbrock algorithm, ® = 0.544
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Power Spectrum - Rosenbrock
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Figure 2.8 Power spectrum of Rosenbrock-controlled Rijke Tube, @ = 0.544

Because both are pattern searches, the statements related to the transient response of
the Hooke and Jeeves algorithm also apply to the Rosenbrock algorithm. The convergence
times, ultimate attenuation, and the phase and magnitude of the controllers for each of the
algorithms at this operating condition are tabulated in Table 2-2. For the low equivalence
ratio case, each algorithm was successful in gaining control of the thermoacoustic instability.
On average, there was about 57 dB of attenuation and a convergence time of approximately
3 seconds.

Table 2-2: Convergence times and ultimate attenuation at limit cycle frequency for ® = 0.544

Algorithm  |Convergence Time| Ultimate Attenuation| Filter Filter
Magnitude| Phase

Hooke and Jeeves 2.219 sec. 56.1dB 0.95 106°
Rosenbrock 3.852 sec. 58.2dB 1.55 134°

24.2.2 Medium Equivalence Ratio Case

The second condition was at an equivalence ratio of 0.582. Figure 2.9 shows the
power spectrum of this condition with the instability at nearly 180 Hz and a magnitude of
approximately 8 dBVrms, while Figure 2.10 shows the envelope of the oscillations.

13




Power Spectrum of unstable Rijke Tube
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Figure 2.9 Power spectrum of Rijke Tube, ® = 0.582
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Figure 2.10 Limit cycle oscillations of Rijke Tube, ® = 0.582

The tuning phase was run for this operating condition and the results are given in Table 2-3
and the resulting convergence times for this condition are given in Table 2-4.
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Table 2-3: Parameter Values for the @ = (0.582

Equivalence Ratio, ® 0.582
Perturbation Size, & 0.1621
Integration Length, N 361 samples

Raising the equivalence ratio to 0.582 did not negatively affect the performance of
the algorithms. The results for this case, in fact, are very similar to that of the previous case.
The results ate shown in Figure 2.11 through Figure 2.14, encompassing both algorithms.

Haoke and Jeeves an Rijke Tube
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Figure 2.11 Phase and magnitude of filter Hooke and Jeeves algorithm, ® = 0.582
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Figure 2.12 Power spectrum of Hooke and Jeeves-controlled Rijke Tube, ® = 0.582
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Power Spectrum - Rosenbrock
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Figure 2.14 Power spectrum of Rosenbrock-controlled Rijke Tube, ® = 0.582

The results shown in the above figures are tabulated in Table 2-4, with the
convergence time, ultimate attenuation, and magnitude and phase of the controller.

Table 2-4: Convergence times and ultimate attenuation at limit cycle frequency for the @ = 0.582

Algorithm Convergence Time| Ultimate Attenuation |Magnitude| Phase

Hooke and Jeeves 2.075 sec. 50.8 dB 0.81 99°

Rosenbrock 2.726 sec. 57.1dB 1.25 119°

The magnitudes and phases that wete developed by the algorithms for this operating
condition are similar to those for the previous condition, and the attenuation was
approximately 55 dB. The average convergence time for this case was 2.4 seconds, which
is slightly lower than the low equivalence ratio case. This is most likely due to a shorter
integration length for this condition.

24.23 High Equivalence Ratio Case

The final condition that was tested on the Rijke tube was a high equivalence ratio of 0.641.
This equivalence ratio produced the power spectrum in Figure 2.15 and the oscillation trace

in Figure 2.16.
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Figure 2.15 Power spectrum of Rijke Tube, ® = 0.641

Limit Cycle Oscillations on Rijke Tube
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Figure 2.16 Limit cycle oscillations of Rijke Tube, ® = 0.641

The tuning phase was once again run and Table 2-5 outlines the results. Table 2-6 presents
the convergence times of each algorithm for the high equivalence ratio operating condition.
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Table 2-5: Parameter Values for the ® = 0.641

Equivalence Ratio, © 0.641
Perturbation Size, & 0.2736
Integration Length, N 341 samples

Results for the Hooke and Jeeves algotithm on the high equivalence ratio condition
are presented in Figure 2.17 and Figure 2.18. Note that control cannot be maintained for
this condition. Initially, control is achieved, but then the system produces a series of bursts
in the pressure signal. This phenomenon has been documented previously in Vaudrey [1],
which states that the bursting is due to a combination of lack of actuator authority and a
changing plant. As the flame becomes stable the heat release increases, which drives the
poles further into the right half of the s-plane. At leaner conditions, there is still enough
authority to maintain control over this increasingly unstable plant, but at richer conditions
the actuator lacks this authority. As the system begins to lose control and become unstable,
the heat release decreases. This allows the actuator to regain control, and the process repeats
itself in the form of a series of bursts in the combustor pressure.

Hoake and Jeeves on Rijke Tube
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Figure 2.17 Phase and magnitude of filter Hooke and Jeeves algorithm, @ = 0.641
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Power Spectrum - Hooke and Jeeves
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Figure 2.18 Power spectrum of Hooke and Jeeves-controlled Rijke Tube, ® = 0.641

Rosenbrock results are shown in Figure 2.19 and Figure 2.20.
Rosenbrack on Rijke Tube
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Figure 2.19 Phase and magnitude of filter Rosenbrock algorithm, ® = 0.641
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Power Spectrum - Rosenbrock
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Figure 2.20 Power spectrum of Rosenbrock-controlled Rijke Tube, ® = 0.641

The transient response for the Rosenbrock algorithm shows extreme bursts in the
pressure signal. The Rosenbrock algorithm searches the weight space and settles into a
region that produces the lowest MSE of the pressure signal. The algorithm will begin to
search again if 2 measurable increase in the MSE occurs. This is the reason that the bursts

for this algorithm are so severe.

Table 2-6: Convergence times and ultimate attenuation at limit cycle frequency for the @ = 0.641

Algorithm

Convergence Time

Ultimate Attenuation

Hooke and Jeeves

2.193 sec.

11.0dB

Rosenbrock

2.379 sec.

6.9dB

2424

Proportional Actuation Discussion

At this point, there should be a short discussion on the results of the tuning for each
of the above conditions. It can be seen that the integration length, N, decreases with
increasing equivalence ratio, from 402 for the low case to 341 for the high case. This is the
expected result considering the plots of the limit cycling pressure signal. Figure 2.4 shows
the trace of the low equivalence ratio case, and it shows that the amplitude of the oscillations
is far from uniform. This is compared to Figure 2.10 for the medium case and Figure 2.16
for the high case, in which the envelope is much less sporadic. Thus, it can be concluded
that the low equivalence ratio case should require the longest averaging time.
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One would expect that the perturbation size, 8, would increase as the equivalence
ratio increased. This is due to the fact that with an increase in equivalence ratio comes an
increase in the limit cycle amplitude, thus a larger perturbation is required to achieve a
measurable change in the MSE. The perturbation size stayed relatively constant from the
low to medium case, but did increase substantially for the high case.

The Hooke and Jeeves algorithm has outperformed the Rosenbrock algorithm with
respect to convergence time in the Rijke tube tests. The Hooke and Jeeves algorithm also
was better suited for situations in which actuator authority was an issue, such as the ® =
0.641 case. When actuator authority was not an issue, the Rosenbrock algorithm did
produce a slight advantage in the attenuation of the pressure signal.

This work has shown that the two pattern search algorithms that were investigated
converged quickly and could maintain an acceptable level of attenuation.

2.5 References

(1] M. A. Vaudrey. “Active Control Methods for Non-linear Self-excited Systems,” PhD
Dissertation, Virginia Tech, 2001.

[2] M. S. Bazaraa, C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley and
Sons, Inc., New York, NY, 1979.

(3] B. Widrow, S. D. Stearns, .Adaptive Signal Processing,

Prentice Hall, Inc., Englewood Cliffs, NJ, 1985.

[4] D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, Inc.,

New York, NY, 1972.

[5] K. McManus, T.Poinsott, S.M. Candel, “A Review of Active Control of Combustion
Instabilities,” Prog. Energy Combust. Sci. 19, 1993, pp. 1-29.

[6]R.L. Raun, M.W. Beckstead, ].C. Finlinson, K.P. Brooks, “A Review of Rijke Tubes, Rijke
Burners and Related Devices,” Prog. Energy Combust. Sci. 19, 1993, pp. 313 — 364

22




3 Explicit Gradient Algorithms

3.1Introduction

This chapter discusses the work done with explicit gradient algorithms. These
algorithms are based on the method of steepest decent. In general, the explicit gradient
algorithms perturb the filter weights, calculate the gradient of the cost function, and descend
in the gradient direction using a specific weight update equation.

3.2Theory

3.2.1 Time Averaged Gradient (TAG)

The TAG algorithm performs a gradient seatch by the method of steepest descent
for which the basic weight update equation is:

w,(k+1) =w, (k) - x&'(w, (k) (3.1

where w, is the n filter coefficient and the gradient, &', is calculated from:

£(w,) = sw,) —g(wn —9) (3.2)

The cost function, &, is the mean squated etror (MSE) of the signal:
1 &,
Ew,)=— €’ (k). (3.3)
Ni=

The convergence parametet, |1, is a system dependent value that controls the speed of
adaptation and stability of the filter.

A more detailed description of this algorithm can be found in Widrow [3] and experimental
results were presented by Vaudrey[1].

3.2.2 Gradient Descent with Line Search

This algorithm is an extension of the TAG algorithm, with the addition of a line
search along the gradient direction. The gradient is calculated using the same procedure
described above, but instead of taking a fixed step, y, along the gradient, the algorithm
searches along the gradient direction for the optimal step size. This is done by taking
successively larger step sizes and evaluating the corresponding MSE. When an increase in
step size no longer results in increased performance, a new gradient is calculated, and the
procedure is repeated.
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3.2.3 Fletcher and Reeves Conjugate Gradient

The conjugate gradient method of Fletcher and Reeves creates search directions that
are a linear combination of the steepest decent direction and previous search directions.
Weighting factors are applied such that the search directions are conjugate. These factors
are ratios of the present and past squared norms of the gradient. Bazaraa and Shetty[2]
summarized the Fletcher and Reeves Conjugate Gradient as follows:

Initialization Step: The scalar € > 0 terminates the algorithm and the initial
pointis x,. Lety, = x,, d, =-Vf(y,),k=j =1, and go to the main step

Main Step:
1. If HVf(yj )” <&, stop. Otherwise, let A, be the optimal solution to the
problem to minimize f(y, +4,d,) subject to A; 20, and let

Y=Yy, +4,d,;. If j<n,gotostep 2, otherwise go to step 3.

Vi)
2. Letd,, =-Vf(y,)+a,d,, where a.=y—ﬂ—l—. Replace j by

o "ol

!2

j + 1,and go to step 1.
3. Let yy =X, =Y,.,andlet d =~Vf(y,). Letj=1,replacek by k + 1,
and go to step 1.

The concept of conjugacy is very important in unconstrained optimization problems.
If the function to be minimized is quadratic, conjugate search directions guarantee that
convergence will occur in at most 7 steps, where 7 is the number of parameters being
adapted.

3.3 Robustness and Implementation Issues

The gradient descent algorithms used the same means of computing the MSE as
mentioned in the previous chapter for the pattern search algorithms. These algorithms also
used the same procedure for computing the integration length, N, and the perturbation size,
8. The TAG algorithm is also a function of the convergence parameter, u, which was also
calculated during the tuning phase.

Widrow [3] gives the bounds of  for the LMS algorithm as
>u>0 34

max
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where A, is the largest eigenvalue of the input correlation matrix, R. The R matrix is
defined as

R=E|x,x,| (3.5)
where X, is the input matrix.

It can then be stated that A_,, cannot be greater than the trace of R (tr[R]), which 1s the sum
of the diagonal elements of R. From the definition of R,

t[R]= (L +1)E[x,’] (3.6)
where L is the number of inputs. Thus the bounds of i can be stated as

1

< (3.7)
(L +1)(signal power)

O<u

In practice, the signal power was calculated identical to the MSE mentioned above,
and the convergence parameter used was 25% of the upper bound given above. Because
this expression is derived from work on the LMS algorithm and assumes a transversal filter,
this approach is valid when used to adapt an FIR filter. This approach was used for this
work because these algotithms were indeed used to adapt an FIR filter, but care must be
taken if a different control structure is being employed. These bounds may no longer be
valid.

3.4Experimental Results

3.4.1 Performance using Proportional Actuation on Rijke tube

The experimental set-up that was outlined in the ptevious chapter was again used for
tests of the explicit gradient algotithms. There were, again, three separate operating
conditions that were employ during the tests.

3411 Low Equivalence Ratio Case

The transient response, phase and magnitude, and power spectrum for the TAG
algorithm control at the ® = 0.544 equivalence ratio condition are shown in Figure 3.1 and
Figure 3.2.
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TAG on Rijke Tube
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Figure 3.1Phase and magnitude of filter for TAG algorithm, ® = 0.544

Refer to equations 2.5 and 2.6 for the conversion from filter weights to angle and
phase of the filter.
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Figure 3.2 Power spectrum of TAG-controlled Rijke tube, ® = 0.544

The TAG algorithm was able to produce satisfactory attenuation of the pressure
signal, along with a reasonable convergence time. Figure 3.1 shows that the magnitude and
phase of the controller do not teach a steady-state value. This is because the algorithm
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continuously perturbs the system to calculate a gradient, which causes continuous, small

fluctuations in the magnitude and phase.
The results of the Gradient algorithm for this same operating condition are

ptesented in Figure 3.3 and Figure 3.4.
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Figure 3.3 Phase and magnitude of filter for Gradient algorithm, @ = 0.544
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Figure 3.4 Power spectrum of Gradient-controlled Rijke Tube, ® = 0.544
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The Gradient algorithm, too, performed well at this condition. It is important to
note that the dominant energy component in the power spectrum has shifted from the initial
limit cycling frequency of approximately 180 Hz to the second sub-harmonic frequency of
90 Hz. This is a result of using a bandpass filter on the pressure signal. A narrow bandpass
was used, and as a result the information at the subharmonics is filtered. The Gradient
algorithm does not see the growth at this frequency, thus does not adapt to reduce this signal
component.

Results for the Conjugate algotithm are shown in Figure 3.5 and Figure 3.6.
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Figure 3.5 Phase and magnitude of filter for Conjugate algorithm, ® = 0.544
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Figure 3.6 Power spectrum of Conjugate-controlled Rijke Tube, ® = 0.544

Results for the Conjugate algorithm are very similar to that of the Gradient
algorithm, including the dominant energy component shifting to a sub-harmonic frequency.

The convergence times, ultimate attenuation, and the phase and magnitude of the
controllers for each of the algorithms at this operating condition are tabulated in Table 3-1.
For the low equivalence ratio case, each algorithm was successful in gaining control of the
thermoacoustic instability. On average, there was about 62 dB of attenuation and a
convergence time of approximately 1.4 seconds. Comparing the results from Table 3-1 with
that of the pattern search algorithms of the last chapter demonstrates that the gradient
descent algotithms outperformed the pattern search algorithms with respect to convergence
time. The Rosenbrock and Hooke and Jeeves results showed that these algorithms might
take steps in the non-optimal direction and thus produce temporary growth in the pressure
oscillations during the convergence process, whereas the explicit gradient algorithms always
move in the gradient direction towards the minimum.

Table 3-1: Convergence times and ultimate attenuation at limit cycle frequency for , ® = 0.544 Case

Algorithm  |Convergence Time| Ultimate Attenuation | Filter Filter

Magnitude| Phase

TAG 1.343 sec. 58.1dB 0.84 112°

Gradient 1.363 sec. 66.2 dB 1.59 107°

Conjugate 1.478 sec. 63 dB 1.61 114°
3.41.2 Medium Equivalence Ratio Case
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Raising the equivalence ratio to 0.582 did not negatively affect the performance of
the algorithms. The results for this case, in fact, are very similar to that of the previous case.
The results are shown in Figure 3.7 through Figure 2.20, encompassing each algorithm.
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Figure 3.7 Phase and magnitude of filter TAG algorithm, ® = 0.582
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Figure 3.8 Power spectrum of TAG-controlled Rijke Tube, ® = 0.582
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Gradient on Rijke Tube
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Figure 3.9 Phase and magnitude of filter Gradient algorithm, ® = 0.582
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Figure 3.10 Power spectrum of Gradient-controlled Rijke Tube, ® = 0.582
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Conjugate Gradient on Rijke Tube
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Figure 3.11 Phase and magnitude of filter Conjugate algorithm, ® = 0.582
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Figure 3.12 Power spectrum of Conjugate-controlled Rijke Tube, ® = 0.582

The results shown in the above figures are tabulated in Table 2-4, with the
convergence time, ultimate attenuation, and magnitude and phase of the controller.
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Table 2: Convergence times and ultimate attenuation at limit cycle frequency for the Medium @ Case

Algorithm Convergence Time| Ultimate Attenuation |Magnitude| Phase
TAG 1.636 sec. 44.8 dB 0.81 114°
Gradient 1.407 sec. 66.1 dB 1.68 111°
Conjugate 1.315 sec. 65.8 dB 1.69 107°

The magnitudes and phases that wete developed by the algorithms for this operating
condition are similar to those for the previous condition. The average convergence time
for this case was about 1.45 seconds.

3.41.3 High Equivalence Ratio Case

Results for the TAG algorithm on the high equivalence ratio condition are presented
in Figure 3.13and Figure 3.14. Note that the explicit gradient algorithms, like the pattern
search algorithms, are also affected by the lack of authority issue for this equivalence ratio.

TAG on Rijke Tube

14} — Enor

— Angle *0.01
13t —— Magnitude

—_
T

e

o
m
T

o
o)
T

1

Amplitude

o
=

0.2

04 1 1 t
0 5 10 15 20 25

Time (sec)

Figure 3.13Phase and magnitude of filter TAG algorithm, @ = 0.641
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Figure 3.14 Power spectrum of TAG-controlled Rijke Tube, ® = 0.641

The results for the Gradient case are shown in Figure 3.15 and Figure 3.16, which also
demonstrate a bursting behavior, though less severe than the TAG case.
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Figure 3.15 Phase and magnitude of filter Gradient algorithm, ® = 0.641
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Power Spectrum - Gradient
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Figure 3.16 Power spectrum of Gradient-controlled Rijke Tube, ® = 0.641

Figure 3.17 and Figure 3.18 show the transient response and the power spectral density,
respectively, for the Conjugate algorithm. The results of this test are very similar to that of
the Gradient algorithm.
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Figure 3.17 Phase and magnitude of filter Conjugate algorithm, ® = 0.641
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Power Spectrum - Conjugate
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Figure 3.18 Power spectrum of Conjugate-controlled Rijke Tube, ® = 0.641

Much like pattern search algorithms at this high equivalence ratio, the explicit
gradient algorithms could not maintain control over the Rijke tube instability. The
performances of the explicit algorithms, however, were superior to that of the pattern search
algorithms. The pattern search algorithms search the weight space and settles into a region
that produces the lowest MSE of the pressure signal. The algorithms will begin to search
again if a measurable increase in the MSE occurs. This is the reason that the bursts for these
algorithms are so severe. Instead of continually computing the gradient like the explicit
gradient algorithms, and thus gaining knowledge as the system changes, the pattern search
algorithms wait until the bursts occur and then descend upon the optimal answer again.

3.4.2 Proportional Actuation Discussion

The three explicit gradient algorithms discussed here have been shown to achieve
high levels of attenuation with good convergence rates when the system was within the
authority range of the actuator. The Gradient algorithm and the Conjugate algorithm
performed very similarly and, in general, better than the TAG algorithm. This is to be
expected because of the incorporation of a line search and conjugate search directions in
the Gradient and Conjugate algorithms, respectively.

When actuator authority was an issue, the algorithms converged but could not
maintain an acceptable level of control. The explicit gradient algorithms did, however,
outperform the pattern search algorithms discussed in the previous chapter.
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4 Filtered-E Based Algorithms

4.1Introduction

In this chapter, we explore the applicability of adaptive signal processing methods to
the problem of active combustion control (ACC). These adaptive filtering methods, such as
the LMS algorithm proposed by Widrow and Stearns (1985), have been highly successful in
the active noise and vibration control community for narrowband disturbance rejection.
The most relevant application of LMS control for noise or vibration control was the so-
called Filtered-U algorithm [14] which required feedback compensation for the reference
sensor. The ACC implementation is similar in its need for reference sensor compensation
because the reference sensor is often identical to the error sensor. A number of combustion
researchers have investigated the usefulness of these LMS algorithms for ACC (11,121, [11],
[16], and [13]). However, most of the results from those experiments and numerical
simulations indicated an uncertainty about the proper implementation with regard to
employing a plant estimate. As a result, the literature shows that the LMS controlled systems
often diverged, sometimes minutes after the combustor’s pressure signature seemed to have
been reduced to acceptable levels.

This chapter extends the existing rescarch into the design of LMS adaptive filters for
suppression of combustor thermoacoustic instabilities. Thermoacoustic instability control is
fundamentally different from the noise and vibration control problems that have been widely
discussed in the literature. The most notable differences are that there is no exogenous
disturbance to be cancelled and the homogenous system to be controlled is both unstable
and nonlinear. The specific effects that these differences have on the LMS adaptive control
performance have been largely glossed over in earlier references. The primary objective of
this chapter is to clarify the precise nature of the LMS control performance for
thermoacoustic instability control applications. In particular, we propose a completely
different alternative for the system model used in the filtered-X adaptive feedback structure.
A system identification method to estimate the required model is also proposed and it is
shown that this method leads to a unique lincar approximation that can be used for
stabilizing control. Extensive experiments are also conducted on a Rijke tube combustor,
showing indefinite stabilizing control of the limit cycle oscillation. Nonlinear simulations of
relevant ACC LMS control experiments are used to explain the detailed behavior of the
plant for those cases where control is achieved. Then we examine in detail an operating
condition for which the LMS controller is not effective and the system exhibits bursting
behavior. It is shown that this behavior is unrelated to the adaptive controller and is due,
ultimately, to a lack of control authority. (We note that bursting is a characteristic of certain
adaptive controllers and that bursting has been noticed for both fixed-gain and adaptive
ACC control by other researchers.)

Although our expetiments with LMS-based feedback control have been successful, it
is important to consider potential problems with the algorithm. LMS-based feedforward
algorithms have substantial stability guarantees, but these do not carry over to feedback
implementations. Thus, we examine the potential for feedback loop instabilities and
algorithm divergence in terms of the plant estimate for LMS-based feedback control of
stable systems subject to exogenous disturbances. Next, the results are extended to filtered-
U control structures as well as the control of unstable, self-excited plants. In addition, the
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dependence of the instabilities on each other, and the use of online system identification
techniques are examined for both adaptive feedback and filtered-U control. Finally, two
simulations are presented. The first illustrates a feedback loop instability independent of
algorithm divergence. The second simulation shows how a conventionally accurate plant
estimate can yield an algorithm divergence independent of a loop instability. This is shown
to agree with the analytical results.

4.2 Adaptive Feedback Control

4.21 Classical Disturbance Suppression

The adaptive feedback controller considered in this chapter can be viewed as a
special case of Filtered-U control where the control-to-reference path and the control-to-
error path are identical because the error sensor also serves as the reference sensor [14].
Figure 4.1 shows the adaptive feedback control block diagram for the case of an external
disturbance and stable plant. It is instructive to briefly examine this system as a precursor to
analyzing LMS control of a self-excited thermoacoustic system.
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Figure 4.1 Adaptive Feedback External Distubance

In a purely feedforward control system, a separate reference signal that is correlated
with the disturbance is used as the input to the adaptive filter. It is well-known that correct
estimation of the dynamic phase, within ninety degrees, is sufficient to prevent divergence of
the LMS gradient search [7]. In adaptive feedback control, the reference signal is derived
directly from the error sensor by removing the component of the error signal that is due to
the control signal, leaving only a measure of the disturbance. If we let the control signal be
the output of the FIR adaptive filter (W), we note that it must go through the plant dynamics
(G,) before acting on the external disturbance (n). The dynamics tepresented by the plant
include everything present in the control signal to error signal path, including the A/D and
D/A. Therefore, removing the control signal component from the error requires
subtracting the output of the adaptive filter, filtered by the plant estimate, from the
measured error signal. Hence, if the plant estimate is not perfect, a non-zero feedback path
is introduced. The closed loop transfer function between the error and the disturbance can
then be written as:

e 1+GPW
= @.1)
n 1+GW-G,W
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Unlike the self-excited system, if the plant estimate is exact (G » = G,), there is no feedback
loop as the denominator of the above transfer function vanishes and the system behaves as a

strictly feedforward system where G , and W are both stable systems. For the case where

G » # Gy, it is clear that the poles of (4.1) will change with the adaptation of the filter W and
represent a potential source of controller instability.

4.2.2 Self-Excited Systems

Figure 4.2 illustrates a simplified block diagram of an adaptive feedback controller
applied to a self-excited system, such as the VPI Rijke tube combustor. Although the
physical dynamics of the self-excited system are complex and the subject of ongoing
research, a simplified model consisting of a linear acoustics block, G, a linear flame
dynamics block, G, and a nonlinear coupling block is sufficient for the control system
analysis discussed here. In the analysis and simulation, the nonlinear block is treated as a
static, saturating-type nonlinearity. Though crude from a broadband modeling point of
view, the extremely tonal nature of the system makes this a useful approximation.
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Figure 4.2 Adaptive Feedback Self-Excited

The actuation signal passes through a linear block, G, that incorporates both the
actuator dynamics and the acoustic dynamics. Since the outputs of G, and G may both be
considered as acoustic pressures, they can be superposed to produce the total combustor
pressure variation, Pr. In the controller, the output of the adaptive filter is filtered by the
plant estimate and used to generate the reference signal from the error signal as before,
although the appropriate plant estimate is less obvious now as a result of the inclusion of the
self-excited system.

The controlled system consists of two main loops, the physical feedback loop and
the control loop, as shown in Figure 4.3. We define the optimal controller as the controller
that completely nullifies the physical feedback loop. Equating the top loop to the bottom
loop (with a minus sign) and solving for the optimal adaptive filter (W,py), results in

- - GA GF
" Gur +G,GG,

By substituting (4.2) into the block diagram of Figure 4.3 as the adaptive filter W, it is
obvious that the lower loop (feedback controller) exactly cancels the upper loop G,G;

4.2)
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resulting in a completely stabilized closed loop system. Equation 4.3 illustrates this result for
the probe input shown in Figure 4.3.

13 Ger (14 G W) |
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Figure 4.3 Redrawn Controlled System

Discussion of the optimal adaptive filter weights is more interesting for this self-
excited plant application, versus the ANC problem, because of the quiescent state that the
combustor will reach as soon as the poles have crossed back into the left-4a/f Laplace plane
under the action of the controller. Because the open-loop self-excited system of (4.3) does
not contain dynamics that are on the imaginary axis (i.e. marginally stable), there is a set of
gains (between the imaginary axis and the optimal solution) that will stabilize the system
without requiring the adaptive filter to reach its optimal solution. This system will be more
lightly damped than the open-loop system but still stabilized. If the adaptation causes the
system to stabilize, the error signal will go to zero and the adaptation will stop, never
reaching the optimal gain.

4.3 Analysis of Adaptive Feedback Applied to Self-Excited Systems

4.3.1 The Correct Plant Estimate

Initially, the system will be examined in the linear range so that the nonlinearity reduces to a
simple gain that can be lumped with the flame dynamics, G¢. The total pressure (Py) serves
as the error signal to be reduced and is used by the adaptive feedback structure to update the
weights and create the reference signal. The expression for the transfer function between
the probe input of Figure 4.3 and P, results in:
P G yer 1+ G W) i
p 1-G,G,~GG.GW+GW-G,e:,W '
In a purely feedforward situation, the dynamics from the control-to-error path are
clear, and can be identified directly, often in the absence of the disturbance, and a model can
be generated. The appropriate choice for the control-to-error path estimate is not as clear
when the self-excited system is addressed. The self-excited system of Figure 4.3 offers two
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logical choices for the plant estimate. Follong the standard procedure for feedforward
problems, one choice for the plant estimate is the open loop dynamics of the control-to-
error path, which yields

fr_ =G = Gucr
P
P 1-G,G;,
The acoustic dynamics have been moved from the forward path of the self excited loop and
appear separately as part of the actuator dynamics and the self-excited feedback loop. (Stated

otherwise, the same acoustics influence the self-excited loop and the actuator path).
Substituting this choice for the plant estimate,(4.5), into the denominator of (4.4) yields

1- GAGF - GAGFépW + GPW - GACTW & o Gucr =1- GAGF (4.6)

P=l"G.4GF

4.5)

This result guarantees that the adaptive filter cannot influence the poles of the closed
loop system, and they will remain in the unstable right half plane! Therefore, this choice of
the plant estimate is not considered to be a valid solution and can never robustly stabilize the
self-excited system.

An alternative proposal is to use the actuator path alone as the plant estimate such

that G ¢ = Gacr- Assume the output of the acoustic portion of the self-excited loop is the
external disturbance to be canceled at the error sensor. In this case, the dynamics between
the control output and the error sensor represent the actual control-to-error path. In
addition, the artificial reference signal now becomes an estimate of the exact disturbance
signal at the error sensor. This can be seen by recognizing that:

P.=d+G,c

act

r=P-Gec=d+G

act

A 4.
c-G,c &7
where d is the output of the acoustic plant, c is the output of the controller, P; is the
measured error signal and r is the derived reference signal. Not only is the reference signal
accurately representing the disturbance to be cancelled (when the plant estimate is G,), but
the required plant estimate is of a strictly stable system. Using G,¢; as the control-to-error
path estimate, we can again examine the closed loop system of (4.4).

P, Gor (146G, W) | G(4GeW)

P 1-G,G;-G,G,GW+G W - Gur¥|, . 1-G,Gr~G,G,G ;W

4.8)

It is clear from (4.8) that the adaptive filter can now influence both the zeros and the
poles of the closed loop control system, allowing for the possibility of stabilizing the self-
excited system.

If we assume that the plant estimation error is zeto and G p is exactly equal to G,
the block diagram of Figure 4.2 can be redrawn as shown in Figure 4.4. It is clear that when
using the appropriate plant estimate (assuming petfect identification), the system is identical
to the feedforward filtered-X structure and can theoretically behave as a feedforward system.
In view of Figure 4.3, it is easy to see how the adaptive filter imparts the needed gain and
phase to control the limit cycling system through the feedback loop. The significance of the
control-to-error path estimate (G p) in the controller transfer function is also evident from
Figure 4.3.

42




Ga '¢— NL |4

A
——— > W P Gacr

Pr

> Gact P LMS [«
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4.3.2 System Identification

Because of the uncertainty in previous wotk concerning the plant to be estimated,
the topic of system identification has not been addressed adequately. Billoud et.al. [2]
discuss using the filtered-X algorithm where the plant estimate is either generated from a
single tone identification near the limit cycle frequency or by using an assigned gain and
phase delay. Kemal and Bowman [11] discuss obtaining an open loop frequency response
but do not provide details regarding the exact nature of the transfer function obtained.
Ultimately, they note that using a gain and delay appears sufficient for tonal control.
Koshigoe et. al. [13] among others, have investigated using an online system identification
procedure. Because of the feedback nature of the self-excited system, the online
identification will necessarily include the controller and feedback dynamics. If Gcr is the
correct estimate, online identification procedures cannot produce the correct result after the
loop has been closed.
The identification problem, then, is to find a stable representation of G, when we have
access to the input to G, but the only measurable output is Pr. Extinguishing the flame so
that the physical feedback loop disappears is not an option since the hot acoustics, which are
an integral part of G ¢y, are very different from the cold acoustics and are directly influenced
by the flame temperature and temperature gradient. Thus, the identification must take place
in the presence of the thermoacoustic limit cycle.
A new approach to identifying the open-loop plant relies on a probe signal consisting of
low-amplitude sinusoids at frequencies near the limit-cycle frequency and within the
passband of any bandpass filters used to filter the pressure signal before control. Using a
Fourier transform of the output signal, the frequency response of the plant at a small
number of frequencies can be determined. Using a least-squares approach, a low-order,
discrete-time model can be fit to this data and used as the model of the stable plant.
Since the open-loop plant is in a steady limit cycle, it is not immediately obvious whether
such an identification approach will produce 2 reasonable linear model or whether such a
model will be stable or unstable. Our experimental results have shown that very low-order
linear models can account accurately for the frequency response data and that these models
are always stable.
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Figure 4.5 System Identification — Open Loop

To understand this, consider the block diagram in Figure 4.5. From a describing
function analysis, the gain of the limit cycle through the static nonlinearity is such that the
total gain around the loop is unity. When a probe signal is injected into the system, we
expect that the frequency response at the probe frequency will be that of the linear system
made up of the linear blocks in the diagram and with the nonlinear block replaced by a
suitable linear gain.

To determine the value of this gain, consider an input to the nonlinearity of the form

x = A sinat + 4, sin(w,t + 6) (4.9)
where , is the frequency of the limit cycle, w, is the frequency of the probe and 4, >> 4, .
A first order approximation of the output of the nonlinearity, fx), is given by

S(4 sinot + 4, sin(w,t +0)) = (A4, sinat)+ f'(4sin o)A, sin(w,t + ) (4.10)

and will be valid for A4, sufficiently small. The gain of the nonlinearity at the limit cycle
frequency is given by

jf_T f[ f(Asinat)+ £'(4sin 1) 4, sin(e,t + 8)]sin ot @4.11)
1

where T is the length of a period of the overall waveform. If no period exists, then the limit
as T —> oo can be taken. By arguing that the integral of incommensurate frequencies will
vanish, the second term in the integral disappears and the linear gain associated with the limit
cycle frequency is equal to the describing function of the nonlinearity. ‘That gain is written
as:

2
gic= % {74 sinasin o 4.12)
1
The gain of the nonlinearity at the probe frequency is given by
A_zf f[ f(4;sinat)+ f'(4 sin )4, sin(e,t + )] sin(w,t + G)dr (4.13)
2

Arguing as before, the first term in the integral will go to zero. In addition, the only
part of the second term that will contribute to the integral is the constant component of

S'(4sinat) times the constant component of 4, sin?(ayt +6). Thus, the gain at the
probe frequency is given by
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g = % f f( 4, sina,f)dt (414

Note that the gain of the probe signal is independent of the amplitude and frequency
of the probe signal, subject to the restriction that the amplitude of the probe is small.
For the tanh nonlinearity considered in this section, the limit-cycle and probe gains can be
computed numerically and are shown in Figure 4.6. The gain of the probe signal is less than
the gain of the limit cycle signal through the nonlinearity. Since the gain of the limit cycle
frequency is just that value needed to make the closed-loop system marginally stable, the
lower probe gain will cause the closed-loop system to appear stable. Since the probe gain is
not a function of the probe frequency, the system identified by considering the frequency
response at the probe frequency will appear linear and stable.
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Figure 4.6 Probe Gain and Limit Cycle Gain

Rewriting 4.5 shows that the identified system will have the transfer function

hog - G g, (419)

p " 1-G,Grg

The reason that this transfer function is approximately equal to G, over the
bandwidth of intetest is because the denominator is very close to one at the probe
frequencies. There are two reasons for this. First, the factor G,Gggp, is always less than
unity for all frequencies in the bandwidth. Secondly, G, contains lightly-damped acoustic
poles that will have a high gain very neat the instability frequency. The gain will be
significantly lower a small distance from this frequency (see Figure 4.10), where the probing
is actually performed. Thus, at the probe frequencies, the factor G,Gg gy, will be
significantly less than unity, resulting in accurate measurements of Gycr.

This plant estimate is stable at all probe frequencies, thereby avoiding the issue of
attempting to use an unstable system identification, ot a time-delay plant, as other
investigations have discussed. In addition, it approximates Gy, previously shown to be the
desired transfer function of the plant estimate. On a related note, we point out that this
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system ID method also makes it possible to design a feedback controller a priori that will
apply the correct phase to the system while avoiding secondary peaks induced from the
controller feedback loop (Vaudrey et al., 2000).

4.4Simulation, Experimental Results, and Actuator Authority

4.41 Simulation Description

A simulation has been designed to permit rapid and easy investigation of the
performance of the adaptive feedback controller in conjunction with the self-excited, limit
cycling system. As will be seen, results from the simulation agree closely with the behavior
of the actual experiment. This is undoubtedly due to the fact that the dynamics that
dominate the system are a single pair of lightly-damped acoustic poles.

Figure 4.2 represents the general form of the adaptively controlled self-excited system that
was simulated. The self-excited loop consists of a low pass filter to represent a model of the
flame dynamics (Gy), a static nonlinearity represented by a hyperbolic tangent function, and
a single-mode lightly-damped (2% viscous damping) acoustical model (G,) at approximately
175 Hz. The loop gain and nonlinearity gain were adjusted to yield a steady limit cycle after
approximately 2 seconds at a sampling rate of 1600 Hz. The actuator path consists of the
same acoustical model plus some amount of phase delay. For the expetiment, this delay
represents all components in the control-to-etror path.

The simulation runs in two separate modes, as does the experimental setup. After
the limit cycle is established, a multi-tone probe signal is applied to the open loop plant as
shown in Figure 4.5. The input to output relationship at the probe frequencies establishes
the magnitude and phase of the linear plant as desctibed in the system identification section
above and in (4.15). This discrete frequency response data representing G is then used to
generate a least squares infinite impulse response (IIR) transfer function fit in the z-domain,
typically of order less than 6, with a pole very near the unit circle representing the “hot”
acoustic mode. This fit is then used as the plant estimate, Gy, during the second mode of
the simulation. After the limit cycle has reached a steady state, and the probe frequencies
have been turned off, the plant model mentioned above is used in the adaptive feedback
control loop shown in Figure 4.2, both as the filtered-X part of the LMS algorithm and as
the plant estimate used to derive the reference signal.

The simulation illustrated here is a case having a relatively low heat release,
corresponding to a low gain in the self-excited feedback loop. Since broadband control is
not the goal, only two adaptive filter weights were used to control the single tone instability.
In the experimental setup, a steep (8-zero, 16-pole) bandpass filter was used to eliminate
frequency content other than the limit cycle tonal. In the simulation, the only significant
content in the error signal is the limit cycle sinusoid so a bandpass filter was not necessary.
Using the stable plant model of G, generated from the fit of the FRF obtained from the
process shown in Figure 4.5, and a relatively fast convergence parameter for the LMS weight
update equation, it is seen that the two adaptive weights shown in Figure 4.7 quickly reach a
steady state condition that completely stabilizes the limit cycle as shown by the controlled
and uncontrolled (dotted) power spectra in Figure 4.8.
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Figure 4.8 Low Heat Release LMS Simulation

As discussed in the analysis section above, it is not required that the adaptive filter
achieve the optimal gain in otder to drive the error signal to zero. Figure 4.9 cleatly
illustrates this by showing the path of the magnitude and phase of the actual adaptive filter
during adaptation, as compared to the optimal magnitude and phase as computed from (4.2).
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Figure 4.9 Low Heat Release LMS Path to Optimal

4.4.2 Experimental Results

The experimental process was identical to that described in the simulation section
above. A multi-tone FRF was performed on the entire plant and a least squares fit was
applied to the data to generate an IIR filter model that represented the control-to-etror path.
This model was then used in the structure shown in Figure 4.2.

With the heat release at a relatively low gain (controlled by adjusting the premixed
methane equivalence ratio to a value of 0.51 and a total flow rate of 120 cc/sec), the Rijke
tube combustor instability at 175 Hz was stabilized indefinitely with a two weight adaptive
filter and the stable plant model obtained prior to control. Figure 4.10 shows (in asterisks)
the actual magnitude and phase data collected from the tube along with the 6 order model
frequency response shown as the solid line.
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Figure 4.10 Experimental Model Data and Fit

Figure 4.11 shows the uncontrolled (dotted) and controlled power spectra of the total
pressute in the tube (converted from voltage units). The second harmonic at 350 Hz
disappears under control, revealing the shape of the third acoustic mode of the tube. The
natural damping of the second acoustic mode is greater than that which is shown in Figure
4.11, but as discussed earlier, the system can be stabilized by having a pole in the left half
plane that is more lightly damped than the natural acoustic mode.
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Figure 4.11 Low Heat Release Experimental LMS Control
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A manually adjustable gain and phase shift controller was also applied to the same
limit cycling system. Refetring to Figure 4.3, it is apparent that the fixed gain controller
replaces the transfer function:
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w
ML (4.16)
1+G W

Examining the magnitude and phase of the converged Equation 16 at 175 Hz as
compared to the magnitude and phase of the fixed feedback controller, it is seen in Figure
4.12 that the phase of both controllers is neatly the same at 175 Hz. The magnitude,
however, is significantly lower for the adaptive system and will not increase with time
because the error signal has been driven below the 1-bit noise floor of the A/D. It is known
that excessive gain can produce controller-induced instabilities (Vaudrey et. al. 2000,
Saunders et. al. 1999-2). However, the adaptive controller can (and does) prevent controller-
induced instabilities by changing its shape and adjusting its magnitude to minimize the mean
squared error.
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Figure 4.12 Fixed Gain and Adaptive Controller Comparison

The results discussed above are indicative of the results obtained at a number of
operating conditions at low equivalence ratios. As the equivalence ratio, and hence heat
release, was increased, a point was reached where intermittent behavior was observed.
Figure 4.13 compates the convergence behavior in the time domain of the adaptive feedback
LMS algorithm for low and high heat release conditions. The upper time trace represents
the convergence corresponding to the control performance in Figure 4.11 whereas the lower
trace exhibits the searching behavior present at the higher heat release operating conditions.
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Figure 4.13 Low and High Heat Release LMS Control

To better understand the intermittency phenomenon, a fixed gain feedback
controller was applied to the combustor at the same operating conditions. This removed the
variability inherent in the time varying (adaptive) controller. As shown in Figure 4.14, the
fixed gain, controlled system exhibited the same cyclic intermittency. Since the fixed gain
feedback controller has no time varying components, it was determined that the heat release
dynamics must be changing in a periodic manner to cause the intermittent behavior.
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Figure 4.14 Fixed Gain Feedback Control — High Heat Release
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4.4.3 Actuator Authority

Researchers have frequently witnessed intermittent behavior of self-excited systems
when controlled by adaptive approaches. Quite often this behavior is attributed to
algorithmic anomalies or controller induced instabilities. While each of these problems can
contribute to searching or marginally stable behavior (Vaudrey, et al., 2001), a third reason
for intermittent behavior is presented here which is not related to time-varying control. It is
important to distinguish this form of intermittency from other instability mechanisms
because the controller design itself is not at fault,

The self-excited combustion system is unique in that the plant dynamics change under
the action of the controller. For a given set of limit cycling gperating conditions described by a
fixed equivalence ratio and flow rate, the combustor gperating point can be described by the
dynamic gain of the heat release that is a function of temperature, heat transfer rates to the
combustor walls, and other unmodeled, low frequency dynamics. The pressure fluctuations
from the limit cycle influence these low frequency dynamics. Consequently, when the
pressure fluctuations are reduced by the feedback control, the operating point changes. This
new, controlled, operating point can have enough increased heat release gain so that the
control effectiveness is limited by actuator power. This effect can be more detrimental at
higher heat release conditions where actuator authority limitations become relevant and
required controller gain is high.

Based on the above observation, a hypothesis was developed and proven
expetimentally to define the searching phenomenon seen for fixed gain feedback control.
The hypothesis can be explained most effectively in a multi-step process representing the
transient characteristics seen in Figure 4.14. It is helpful to first recognize that the linear
representation of the unstable pole in the s-plane moves further into the right half plane as
the heat release is increased; this corresponds to an increase in self-excited loop gain. This
indicates that more control authority/gain is required at higher heat release conditions to
stabilize the system. The core of the hypothesis is that the operating point changes, causing
the self-excited loop gain to decrease, when the flame is excited by oscillating pressure. This
effect occurs as a result of unmodeled low frequency dynamics with long time constants and
is explained in [Khanna, 2001]. If we begin with the uncontrolled system at a high heat
release operating condition and refer to Figure 4.15, the following physical phenomena
occur:

0 Without control, the self-excited linear system pole resides in the right
half plane at operating point T1. Recognize that the gperating point may
change while the gperating conditions remain constant.

When the feedback controller stabilizes the system, the controlled system
pole moves to location 2, still at the T1 operating point. Because the
flame is no longer oscillating, the operating point begins to change
causing gain in the self excited loop to increase. The controlled system
pole gradually moves to location 3.

& When the self excited loop gain reaches operating point T2, the gain
applied by the feedback controller is no longer sufficient to stabilize the
system, and the flame begins to oscillate as the limit cycle grows.

After sufficient oscillation occurs, the operating point moves back to T1,
the self-excited loop gain is reduced, and the feedback control gain can
again stabilize the system. The process repeats indefinitely.

]

)
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Figure 4.15 Controlled Pole Locations

It is clear that this occurs because there is insufficient gain in the feedback controller
to keep the system stable after initial control raises the self-excited loop gain. Indefinite
stabilization only occurs when the controller has enough gain to stabilize the self-excited
loop when the flame is not oscillating. Position 4 represents the #nconsrolled self-excited
dynamics if the flame were not oscillating, at the original operating condition and the new
operating point. Because a stable flame increases the loop gain of the self-excited system,
the controller must be capable of stabilizing the pole as it exists in location 4. For the
experimental Rijke tube examined here, this only occurs in the range of lower equivalence
ratios, based solely on the power of the acoustic actuator.

To prove the dependence of loop gain on flame oscillation, a burner stabilized flame,
similar to that in the Rijke tube, was excited at various probe amplitudes while the gain of
the flame transfer function was recorded. The following table shows the results.

Probe Gain (V) @ 130 4.4.3.11 FRF Amplitude (dB)
Hz ' . @ 170 Hz

0.0 0.86
0.05 0.82
0.1 0.58
0.2 -1.32
0.3 -3.00

The FRF amplitude of the heat release transfer function translates directly into self-
excited loop gain. It is therefore clear that changes in acoustic pressure oscillations affect the
gain of the self-excited loop. It should be noted that this effect can also be observed in the
low equivalence ratio cases that wete stabilized. For example, in the upper trace of Figure
4.13, near the zero second point, 2 change in the level of the controlled oscillation is
observed. This is undoubtedly due to the changing of the heat release dynamics following
the dramatic change in oscillation amplitude after control is first applied.

Because the actuator does not have the power to stabilize the system indefinitely, no
controller design can provide stabilizing control. However, by simply reducing the gain of
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the feedback controller, a new stable limit cycle, at a lower amplitude than the uncontrolled
limit cycle, can be achieved without intermittency. For adaptive controllers, this can be
implemented using an appropriately large leakage parameter so that the adaptive weights
cannot reach their optimal solution. Another solution is to add a secondary probe signal to
the control signal to eliminate the searching behavior. This intentionally oscillates the flame
50 that the self-excited loop gain is low enough that the controller can maintain stabilizing
control at the limit cycle frequency. Each of these techniques strives to reduce the limit
cycle amplitude as much as possible using all of the available actuator authority, without
allowing intermittency.

4.5 Stability and Operating Constraints of Adaptive LMS-Based
Feedback Control

Although the LMS-based feedback controllers discussed in the previous sections
have been reliable in practice, the stability guarantees of the feedforward LMS
implementations do not carry over to the feedback implementations. The following sections
examine two distinct mechanisms for possible instability: feedback loop instabilities and
algorithm divergence. Contrary to feedforward adaptive control, feedback loop instabilities
can be created when adaptive controllers are used in structures containing feedback loops.
This mechanism is examined as a function of plant estimation error for both stable and
unstable systems. A second mode of instability can occur when the plant estimate is
inaccurate, causing the filtered-X LMS algotithm to diverge. This section shows why the
conventional intetpretation of acceptable plant estimation errors is incorrect in a feedback
setting and presents a method for computing the correct gradient filter.

We begin our investigation of robustness of LMS-based feedback algotithms by first
considering the case of controlling stable systems subject to exogenous disturbances. For
the disturbance rejection problem, adaptive feedforward control has received considerable
attention over the last few decades, particularly with application to active noise control [18].
The popular filtered-X variant shown in Figure 4.16 has clear advantages over comparable
feedback structures.

Lyl G, |»| LMS |&-2 ?4
d

Figure 4.16 Adaptive Feedforward Control

Due to its feedforward architecture, the control system is inherently stable when W
is an FIR filter and the adaptation is sufficiently slow. In addition, the filtered-X LMS
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algorithm ensures convergence for physical systems whose adaptive filter output encounters
a dynamic system before being sensed by the error signal.

The LMS algorithm updates the future weights of the adaptive filter in response to a scaled,
instantaneous measurement of the local gradient (derivative of the squared error) as

Wi =W =1V, *17)

The “filtered-X” moniker indicates that the reference signal must be filtered by an estimate
of the control-to-error dynamics in order to accurately estimate the correct gradient at the
error signal. This can be seen by computing the gradient directly as the derivative of the
squared error with respect to the weight vector as shown below

E(z)=-N(2)~-G,(2)W(2)R(z)

dE(z)
VE(z) =22 = -G ()R
(2) AW (2) ,(2)R(2) 1)
Ve, =-G,*7,

V, = Vek2 =2[Ve,Je, =-2(G,*F)e,

where * denotes the convolution operation in the sample domain.

It is clear that the reference input () must be filtered by the plant before being
multiplied by the error to compute the instantaneous gradient. Since the plant itself is not
available in physical applications, an estimate of that plant transfer function is typically used.
It is well known [Elliott et. al., Kuo and Morgan, Motgan] that this estimate must be accurate
to within 90° of phase when compared with the actual plant to ensure convergence of the
algorithm. If the estimate is incorrect by more than 90°, the algorithm will search in the
wrong direction and eventually diverge.

One of the primary limitations of practical implementation of the adaptive
feedforward controller of Figure 4.16 is the requitement for an uncontrollable, cohetent
reference signal. The LMS algorithm assumes that r is highly correlated with n (the
disturbance to be canceled) and that the output of the adaptive filter (c) does not influence .
If the former is violated the control petformance suffers; if the latter is not satisfied, a
feedback loop is introduced that might become unstable during adaptation. In active noise
control applications, it is often difficult to obtain a reference signal that is both coherent
with the disturbance and not influenced by the controller. Adaptive feedback control
attempts to remedy this problem.
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Figure 4.17 Filtered-E Control
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Figure 4.17 illustrates a typical filtered-E controller arrangement [8], [14]. This
arrangement employs the filtered-X LMS algorithm with an estimate of the actual control-to-
error path GP. The external disturbance (n) enters at the etror sensor along with the filtered
control output as in Figure 4.16. Since there is not another reference signal available, the
error is used to estimate the reference signal (1) by subtracting the influence of the controller
from the error signal sensor.

r= (n+Gpc)—Gpc (4.19)

In view of (4.18), if Gp = G, the reference signal is exactly equal to the disturbance to be
canceled and is therefore coherent and uncontrollable. Significant difficulties can arise when
GP deviates from G,.

Before continuing, it should be noted that Figure 4.18 illustrates the same system of
Figure 4.17, only redrawn. This reformulation of the filtered-E block diagram into a
feedforward, filtered-X style system, clearly shows the inherent dependencies that the system
has on the adaptive filter. Here we see that the adaptive filter is a part of the control-to-
error path and can also adapt poles. The effects of these dependencies on the stability of
filtered-E controllers are the focus of this section.
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Figure 4.18 Filtered-E Contro! Redrawn

4.5.1 Feedback Loop Instabilities

Simply using an adaptive filter in a control system does not imply global stability. In
fact, if it is employed in an arrangement as in Figure 4.17, stability can not be guaranteed
during adaptation. Consider the system of Figure 4.17at 2 moment in time when the
adaptation is slow, or has stopped. A transfer function expressing the system input to
output relationship is

y 1+ é pW

= (4.20)
n 1+GW-GW

If Gp is exactly equal to G, the denominator vanishes, leaving a strictly feedforward
system. Assuming W is an FIR filter and the control-to-error path is a stable system, the
system dynamics are guaranteed to be stable regardless of W. If however, G, is not equal to
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G, at any frequency, the system poles can become unstable and are defined by the
denominator of (4.20).

There are many classical control techniques that can be used to analyze the stability
of linear systems including root locus, Routh Hurwitz, Nyquist plots, and Bode plots. For
experimental systems where dynamics are not explicitly known, the most convenient and
intuitive of these is the Bode analysis. The Bode stability criteria uses the open loop
frequency response function to predict closed loop performance. The open loop transfer
function of Figure 4.17 can be expressed as

GP.W
1+G pW

At frequencies where the magnitude of (4.21) is greater than unity for phase values
equal to 360 degree multiples (for positive feedback), the loop will be unstable. It should be
noted that the Bode analysis assumes that the open loop transfer function is stable, i.e. that
the roots of (1+ G W) are in the left half plane. If they are not (determined by examining
the open loop frequency response of G, W), the Nyquist criteria provides a similar stability
analysis for the closed loop system assuming the number of unstable roots is known
explicitly.

It should be clear from (4.20) and (4.21) that any loop instability resulting from
unstable poles of (4.20) is a function of both the adaptive filter and the error between the
plant and its estimate. This is a system dependent phenomenon which cannot be predicted
by assuming W only reaches a fraction of the optimal solution as suggested by [Leboucher
et. al]. The optimal adaptive filter (found when the error is set to zero) is

1
= (4.22)

opt A
p
Assuming a plant estimate error exists, and the adaptive filter has reached the
optimal, (4.20) can still become unstable at a specific frequency even though the numerator
is zero. Likewise, it is possible that the denominator of (4.20) is stable, and the system has
driven the error to zeto with no unstable roots. The stability of the system must be
examined on a case by case basis. It will be a function of the frequency dependent error
between the plant and plant estimate as well as the size and shape of the adaptive filter,
regardless of whether it has reached the optimal solution.

Equation (4.22) illustrates that the optimal solution is only a function of the plant
estimate, which we have obtained a priori. This raises important questions about the purpose
of adapting if the optimal solution is already pre-determined. For broadband disturbance
suppression, (4.22) must be satisfied at every frequency. Typically this is an impractical
modeling task for non-minimum phase systems or finite duration FIR filters. Adaptation of
W will result in the best compromise for control by inverting at the specific frequencies
contributing most to the mean squared error. Tracking changes in those disturbance
frequencies also presents a good argument in favor of adapting W which will ensure the
optimal is maintained.

(4.21)

4.5.2 Algorithm Divergence
Conventional interpretation of the plant estimation error for the filtered-X LMS
algorithm indicates a 90° error between the control-to-etror path and it’s estimate is
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tolerable. This discussion illustrates that this interpretation is not valid for the filtered-E
system of Figure 4.17. First consider that

r=y—épc=n+(Gp—Gp)c (4.23)

follows from Figure 4.17 and (4.18).

Assuming slow adaptation, it is possible to rearrange Figure 4.17 such that the
reference (r) is the system input as well as the exogenous disturbance; Figure 4.18 results.
The feedforward structure of Figure 4.18 facilitates the understanding of the actwaf plant
error analysis as compared to the conventional plant error.

The conventional plant estimate error of this system is the difference in the control-to-
error path and the estimate of the control-to-error path used for the “filtered-X” portion of
the algorithm. From Figure 4.18, this can be seen to be

G G
VA - ~-Z £ <90 (4.24)
1-(G, -G, W 1-(G, -G, W
This is expressed equivalently as
£G,-£G, <90 (4.25)

and is hereafter defined as the conventional plant estimation error (which is equivalent to the plant
estimation error in view of (4.18)) because of its common usage in all adaptive controller
arrangements. This is consistent with the conclusions reached in (4.18) and represents the
common interpretation of the plant error that must be satisfied to ensure convergence for
filtered-X LMS control.

The filter preceding the LMS algorithm (the second term in (4.24)) is the
conventional reference signal filter when employing the filtered-X control strategy of Figure
4.17 and Figure 4.18 . Conventional thinking dictates that as long as (4.25) is satisfied,
convergence to the optimal solution (minimum MSE) will continue. The instance when G
is exactly equal to G, satisfies this constraint because the feedback path is eliminated from
the actual control-to-error path of Figure 4.18. However, when GP is not precisely equal to
G,, a feedback path is introduced that is a function of the adaptive filter W. We will now
consider the case duting adaptatlon when G, has an arbitrarily small amount of estimation
error with respect to G, causing the feedback loop to exist.

As before, the LMS algorithm updates the weights based on the negative gradient as
in (4.17). For simplicity we examine the error vector gradient which defines the filter used to
filter the reference signal in the filtered-X algorithm. The actnal error gradient of the filtered-
E system is now computed based on the nonzero feedback path in the physical control-to-
error transfer function of Figure 4.18.

G,(2W(2)X(2)
E(z)=D(z)- X(2)- NE
(2)=D(2)-X(2) 1-(G,(2)- G, ()W (2)
VE(z)= @) L il @
dW(2)  1-2(G,(2)~ G, ()W (2) +(G, () - G ()W ()’

(4.26)
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The filter used to filter the reference signal in (4.26) must now be compared to what
is conventionally used by the filtered-x in Figure 4.18 to estimate the gradient (without the
explicit dependence on z) as

G G .
Z P s | ———— <90 @27
1-2(G, -G W +(G, -G, )W 1-(G, -G, W

Equation 4.27 represents the difference in the filter that should be used to filter the
reference based on the actual gradient estimate, and the filter that is conventionally used in
the filtered-X formulation of Figure 4.17.

The well-known 90° phase limitation between the physical control-to-error path and
the plant estimate has historically been detived only for a single sinusoid [Morgan, Snyder
and Hanson, Elliot et. al.]. Assumptions made for these derivations rely on a filtered-X
problem formulation where there is no dependence of the control-to-etror path dynamics on
the adaptive filter. An examination of Figure 4.18 shows that unlike the feedforward
situation, where we adapt an FIR filter W(z) that linearly affects the control signal, the
filtered-E structure is essentially adapting an IIR filter H(z) given by

P 10 L4C)
1-(G, (-G, ()

where the parameters to be adapted are contained in the FIR transfer function W(z). To
minimize the mean square error, the gradient is still computed as in (4.26) and can be
expressed as the partial derivative of H(z) with respect to W(z)

OH(2) _ G,(2)
W(z) 1-2G,(2)- G, (W (2)+(G,(2)- G, ()T (2)’

Cleatly, this is much different than the transfer function used in the filtered-E algorithm,
which is the lower left block of Figure 4.18, and shown as the second term in (4.27). The
question then arises as to how much can the gradient used by the filtered-E algorithm differ
from the true gradient and yet still produce convergence to the optimal? It would seem to
be extremely difficult to answer this question globally, since the equations desctibing
nominal trajectories in the weight space are nonlinear. Certainly near the optimum, W, the
cost will be quadratic and we can approximate H(z) in a neighborhood of the optimum as a
transfer function that is affine in the parameters W as a Taylor’s Series expansion about the
optimal:

(4.28)

(4.29)

0H(z)

H(z)= H(z)lW,,,,, + oW (2) W,

=Wy (4.30)

The first and last terms of (4.30) are moved to the forward (disturbance) path
between the reference and error sensor in Figure 4.18, while the control path containing W
is altered by the linearized control-to-error dynamics of gH(z) /aW(_-)|W . Because this filter

is not a function of the changing adaptive filter, the standard 90° phase error analysis for the
filtered-X algotithm now applies. The conclusion is that as long as the phase of the gradient

filter does not depart from the phase of §H(z)/8W(z). by more than 90° at the frequenc
p p (2) ( )Ww y q y

of interest, the algorithm will converge to the optimal solution. If the phase difference is
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greater than 90°, then the optimal cannot be approached, and the algorithm will diverge
from the optimal. Since we have no idea a prior as to the value of W0 it makes sense to use
(4.29) as the gradient filter. It should be noted that in our simulations, we witnessed
divergence over a wide range of the weight space whenever the gradient filter used by the
filtered-E algorithm differed from Equation (4.29) by more than 90°. Note that the negative
sign computed in (4.26) cancels with the negative sign of (4.17) when the FX-LMS algorithm
is implemented so that the sign of the filter agrees with the physical control-to-error path
predicted by (4.30) from (4.29).

Returning to the conventional implementation of the filtered-E controller, the
inequality exptessed by (4.27) defines the difference in the actual plant estimation filter and
the conventional plant estimation filter that is typically used. It should be clear that when
comparing (4.27) and (4.25), the errors will result in different predictions of algorithmic
stability as a function of conventional plant error. It is therefore conceivable that a small
plant estimation etror in conventional tetms that satisfies (4.25), could produce a large error
that violates the actual estimation constraint (4.27), causing an unexpected algorithm
divergence, but one that is predicted by (4.27).

Given this result, one might assume that since the actual gradient filter is known, it
can be used in place of the conventional filter to ensure that the plant estimate is accurate
enough to satisfy (4.27). Since the actual plant estimation filter of (4.26) is a function of the
difference in the actual plant dynamics (G,) and the estimate of the dynamics (GP), this is
impossible. If the actual dynamics were known exactly, they could be used to eliminate the
feedback path resulting in a strictly feedforward system. The tacit assumption in
conventional adaptive feedback control is that the estimate exactly equals the actual plant
and there is no error, thereby turning (4.27) and (4.20) into (4.25) and the numerator of
(4.20). In practice we know there exists some finite error between the estimate and the
actual control-to-error path. However, this can only be analyzed in a simulation where the
error can be explicitly controlled and the actual plant is known exactly.

It is interesting to examine the behavior of (4.27) as a function of the adaptive filter
W. Evaluating (4.27) when W=0, results in

G G .
Ya L |- 4 £ =£G,-£G, <90
1-2(G, -G, W +(G, -G,)'W 1~(G, -G, W )
4.31)

Also noteworthy is the result when (4.27) is evaluated when the adaptive filter reaches the
optimal solution of (4.22).

G G
z[ —F 3 ]— 4(————”————}' =0 4.32)
1-2G, -G W +(G,-G,)'W 1-(G, -G W ol
Therefore at the inception of control, assuming a zero initial condition on the

adaptive filter, the conventional gradient error estimation is valid. In addition, when the
adaptive filter reaches the optimal solution, there is no estimation error, regardless of the
choice of GP! As a result, divergence of the adaptive algorithm due to inaccurate plant
estimation should only be expected during adaptation. Although, practically speaking, a finite
length FIR filter will not likely have the ability to invert the control-to-error path estimate at
every frequency in the controllable bandwidth. Therefore gradient divergence as predicted
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by (4.27) will always remain a practical concern when implementing adaptive feedback
controllers like the filtered-E.

4.6 Practical Applications and Considerations

4.6.1 Interrelated Instabilities

The two instability modes presented above are connected to each other after an initial
transient. Each instability can initiate independently, but because of the inherent
dependence on W in the gradient estimate, they will eventually influence each other.
Suppose that a conventional control-to-etror path estimation error exists, but that (4.27) is
satisfied and the adaptive filter is converging toward the optimal solution. Because an error
exists, the poles of (4.20) exist and are moving as a function of the error and the adaptive
filter. It is possible for one of these poles to leave the unit circle during adaptation and
create a feedback loop instability. This can happen independent of violating (4.27).
However, as the loop instability grows in magnitude, the mean squared error will increase
and cause the adaptive filter to respond. In view of (4.27), a changing adaptive filter will
affect the actual gradient filter error, and potentially cause it to exceed 90°. Therefore 2
feedback loop instability can cause the phase error to exceed the 90° criterion established by
(4.27) resulting in algorithm divergence. Alternatively, the adaptation could potentially re-
stabilize the system! It is also important to note that because of the dependence of the
control-to-error path on the adaptive filter, it is possible that the phase estimation error
defined by (4.27) could be self-cotrecting during adaptation. In other words initial error in
excess of 90° may not guarantee algorithm divergence if the adaptive filter changes the
control-to-error path in such a manner that the actual phase error is reduced.

Although each instability mechanism can initiate independent of the other, they are
ultimately codependent through the adaptive filter magnitude. That is, if one grows without
bound, the other will follow. For this reason, it is virtually impossible to ascertain the
mechanism of instability in expetimental applications because the time scales are typically
too fast. ‘The simulations to follow will illustrate these phenomena in closer detail.

4.6.2 Filtered-U LMS Algorithm

The filtered-E controller examined above can be viewed as a special case of the more
generalized filtered-U LMS algorithm [Wang and Ren]. The filtered-U algorithm, often
employed in duct noise control problems, is illustrated in Figure 4.19. Here there are two
control sensors: the “upstream” reference microphone detects the original source
disturbance (v) and generates the input to the algorithm (x) while the downstream error
microphone senses the noise (n) after being altered by the duct acoustics existing between
those two sensors, represented by P. Because the two sensors are in the same duct, when
the control signal (c) is applied to the system it influences the error signal through the
control-to-error path dynamics (G,) as well as the upstream reference sensor through a

feedback path, F.
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Figure 4.19 Filtered-U Contro!

To see the similarities between the filtered-U and filtered-E structures we need only to
consider the case when the reference and etror signals are identical. When this occurs,
physically, there is only one microphone in the duct and therefore no reference signal “v”.
The transfer function F disappears, P becomes unity, and the reference signal, x, is the same
as the error microphone measurement, y. The disturbance now appears as an exogenous
input to the error sensor. These changes and the resulting system are depicted in Figure 4.20.
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Figure 4.20 Filtered-E Adaptive IIR Contro!

Comparing Figure 4.17 and Figure 4.20, an obvious difference exists in the controller
structure. Figure 4.17 (the filtered-E) uses a fixed estimate of the control-to-error dynamics
to compensate for the feedback path created by using the error signal as the reference.
Figure 4.20 illustrates a filtered-E controller structure as well, where the feedback path is
compensated adaptively by the adaptive IIR form. Equating the transfer functions of Figure
4.17 and Figure 4.20, we see that the two systems are identical when A = W and B = -WGP.
However, because of the adaptive IIR structure there is no guarantee that these will be the
optimal filters or that they will ever be reached [Kuo and Morgan].
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As with the adaptive feedback analysis, the filtered-U system of Figure 4.19 has the
same loop stability limitations. Because the reference signal is controllable and the adaptive
feedback component does not begin at the optimal solution, the possibility for feedback
instabilities exists. In addition, because of the feedback to the reference signal and the
existence of an adaptive feedback filter (B), the conventional gradient estimate cannot be
accurate during adaptation as shown next.

Block diagram algebra of Figure 4.19 reveals:

G4z @)
1-B(z)-A(2)F(z2) (4.33)
V(z)=X(2)-F(2)C(2)

Examining the actual gradient of the error signal (which is proportional to the gradient of
the cost function) with respect to the forward path filter (A) results in
dE _ BG,-G, _ -G,(1-B) X+ FG,(1-B)
dA (1-B-AF)*  (1-B-A4F)’ (1- B- AF)
Conventional application of the filtered-U algorithm uses an estimate of the control-
to-error dynamics (G,) to filter the input of the adaptive filter for updating the weights. In
the case of the forward component of the IIR filter employed here, the input is x and it
would typically be filtered by G,. In fact, the actual gradient estimation includes the
feedback path and is also a function of the output signal ¢ as shown in (4.34). A similar
analysis can be performed for the partial derivative of the error signal with respect to the
feedback adaptive filter B, yielding similar results. It is therefore clear from (4.34) that the

conventional and actual gradient estimation errors can differ quite significantly, and may
unpredictably result in algorithm divergence even when (4.25) is satisfied.

E(z)=D(2)- P(2)V (2) -

(4.34)

4.6.3 Online System Identification

Online system identification is typically employed to track changes in the control-to-
error dynamics over time. For adaptive feedforward systems with time varying control-to-
error transfer functions, this technique may be required to maintain the correct gradient
estimate in the LMS algorithm. Figure 4.21 [Kuo and Morgan] illustrates one possible
technique for performing the online system identification for a filtered-X feedforward
system. It is assumed that the plant G, is time varying and must be estimated by a
continually updated G,
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Figure 4.21 Online System Identification

As shown above for filtered-E control, the actual control-to-error path is a function of
the adaptive filter, and is therefore changing with time. The transfer function coefficient of
X in (4.26) represents the actual control-to-error path estimate that should be used to filter
the input to the LMS algorithm. The question then atises, “if the actual gradient equation is
known, why can’t it be used in the filtered-X update algotithm”. Upon inspection of (4.26),
it should be clear that G, is never known exactly. GP is used to estimate G,; and if the
assumption is that there is no estimation error G, = G, and (4.27) becomes (4.25).

However, in practice there is always an estimation error, no matter how small, that makes
(4.27) the correct gradient error criteria. Therefore, without knowing G, exactly, the (G, -
G,) terms of (4.26) cannot be computed directly.

Another alternative for generating a more accurate estimate of the actual gradient is
the online identification of the gradient. Once the loop is closed (the adaptive filter becomes
nonzero), an online identification procedure will take into account the feedback loop and the
adaptive filter. However, system identification of any input/output relationship of Figure
4.17, will never result in the required transfer function coefficient in (4.26). This is shown
clearly by considering that the characteristic equation of Figure 4.17 is the denominator of
(4.20). Therefore, schemes directly using the results of online system identification cannot
result in the transfer function of the first term in (4.27), which has a quadratic denominator.

A similar argument can be made for an online system identification employed in the
filtered-U system of Figure 4.19. The quadratic denominators of (4.34) prevent an online
system identification procedure from ever yielding the proper frequency response. [Kuo and
Morgan] and [Feintuch] proposed that the feedback terms resulting from F and B in (4.34)
were negligible. In this case the gradient estimates for both adaptive filters become Gp = Gp;
a result that ignores the recursion of both B and F. However, an online system identification
procedure cannot avoid identifying the physical feedback paths, F and B, in Figure 4.19.
Therefore the frequency response resulting from the online identification process (Figure
4.21) of the filtered-U algorithm (Figure 4.19) is

G

—_—f (4.35)
(1-B-A4F)

which is not an accurate representation of their proposed gradient filter approximation, G,.
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4.6.4 Extension to Self-Excited Systems

Our previous analysis has focused on systems having exogenous disturbances acting
on stable plants. We now consider how this analysis carries over to the main problem of
controlling thermoacoustic instabilities. Figure 4.22 illustrates the adaptive feedback
controller applied to a self-excited instability in the form of a thermoacoustic instability. G,
represents the acoustic frequency response of the combustor while G, represents the
nonlinear flame dynamics. G, represents the acoustic transfer function plus actuator
dynamics between the control signal to error signal, typically including time delay.
Unfortunately, the same instability mechanisms for the stable plant control exist for the
unstable plant control. The characteristic equation for the adaptive feedback control system
of Figure 4.22 is represented by

1-G,G,-W(G,,+G,-G,G,G,) (4.36)

There are no guarantees on the stability of the roots of (4.36). The adaptive filter
could easily cause a root of this equation to become unstable during adaptation, regardless of
the choice of GP. This is unlike the stable plant control where the feedback loop is canceled
if G, = G,. Without accurate knowledge of the self-excited system dynamics, it is
impossible to limit the roots of (4.36) to strictly stable values. It should be noted that when
W =W, the roots of (4.36) are the roots of the denominator of G,.,. But no guarantees can
be made on reaching the optimal solution, especially if the gradient estimate is incorrect.
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Figure 4.22 Self-Excited System Filtered-E Control

The gradient of the cost function is even more complex for the self-excited case.
The filter to which the input to the LMS algorithm should be applied will be a function of
the adaptive filter, plant estimate and actual plant as before, but will also be influenced by the
self-excited system dynamics. Computation of the actual gradient of the filtered-E self-
excited system should not be required in order to recognize that the conventional estimate of
G, will be inaccurate with respect to the actual gradient.

4.7 Simulation

Two simulations have been designed that illustrate the two specific instability
mechanisms independently. Each simulates the stable disturbance rejection system of Figure
4.17 using different plants and plant estimates. As set forth in the previous discussions, the
conventional plant error refers to the criterion of (4.25) which was shown to be inaccurate for
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adaptive feedback controllers. Equation (4.27) represents the artual estimation error
criterion.

4.7.1 Feedback Loop Instability

This simulation illustrates a case where the conventional plant error is in excess of 90°
at many frequencies, but no algorithm divergence is observed. Instead, an unstable feedback
loop is generated due to a pole of (4.20) leaving the unit circle.

The plant shown in Figure 4.17 was chosen to have unity magnitude and a linear delay of 25
samples while the plant estimate was chosen to have unity magnitude and 19 samples of
delay at a sample rate of 2000 Hz. The exogenous disturbance was chosen to be a single
sinusoid at 32 Hz with additive white noise at a lower level at every other frequency. The
adaptive filter was a 2 weight FIR filter with a convergence parameter of 0.00003.

The difference in phase between the plant and estimate increased almost linearly,
reaching an excess of 1000° of phase error by 1000 Hz, thus allowing for the possibility of
divergence of the weights due to a conventionally inaccurate system identification. Figure
4.23 illustrates the uncontrolled (solid) and controlled (dotted) power spectra of the tonal
disturbance from the stable plant at 32 Hz. Initially, the tone is suppressed with only two
adaptive filter weights but the loop gain that accompanies the optimal adaptive filter causes a
loop instability at 810 Hz. This is accurately predicted by the Bode gain/phase relationship
in that the open loop frequency response magnitude is in excess of 0 dB at the 810 Hz phase
crossover frequency.
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Figure 4.23 Feedback Loop Instability and Bode Plot Prediction

This adaptive feedback controller diverges because of the feedback loop instability,
not divergence of the algorithm. Increasing the number of adaptive filter weights reduces
the gain of the adaptive filter at 810 Hz thus eliminating that instability. However, the added
phase and filter complexity causes poles at other frequencies, away from the disturbance, to
become unstable before convergence is achieved. For this simulation, the conventional phase
error between the plant and estimate is still in excess of 90° at many frequencies throughout
the control bandwidth but the algorithm never diverges because the actual phase error is less
than 90°.

4.7.2 Algorithm Divergence

When the adaptive filter is at zero or its optimal solution, the actual/ plant error is either
equivalent to the conventional error or is degenerate. Therefore we are only concerned with
the times during adaptation when neither of these conditions are satisfied. In addition, we
are interested in illustrating a case where the conventional plant estimation error is arbitrarily
small but the actual plant estimation error exceeds the constraints of (4.27). Finally, it is
important to continue to differentiate the gradient based algorithm divergence from the loop
instability presented above. This simulation accomplishes each of these goals.

Because the actual plant estimation etror (4.27) established herein is a function of the
plant estimation error as well as the adaptive filter, it is impossible to generalize the expected
gradient error. For this particular simulation the plant estimate was chosen to be unity so
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that the optimal adaptive filter was —1. The control-to-error path was chosen to be a
complex zero at 200 Hz with a damping ratio of .025 combined with a complex pole at 300
Hz with a damping ratio of .016. Due to the way the simulation was designed an additional
delay was imparted to both the control-to-error path and it’s estimate (with a sample
frequency of 2000Hz). These choices resulted in a conventional phase difference in the plant
and plant estimate that was less than 4° at the disturbance frequency of 150 Hz. Therefore
in a conventional interpretation where the tolerable error satisfies (4.25), there is no chance
for gradient divergence at 150 Hz.

In a user controlled simulation environment, we have access to both the actual plant
and the plant estimate. Therefore it is possible to compute the phase difference described by
(4.27) directly for a variety of adaptive filters. In order to effectively visualize the weight
space, a two weight adaptive filter was chosen. This is also typically sufficient to control a
single tone disturbance. Figure 4.24 illustrates the actual gradient error as computed by
(4.27), as a function of the two adaptive weights, at 150 Hz. The *s represent the weight
combinations that result in a gradient error of greater than 90° at 150 Hz; the absence of *’s
represent areas where the acual estimation error is less than 90°. Recall that the conventional
gradient error for the entire weight space, at 150 Hz, is less than 4°. The optimal adaptive
solution of (4.22) is shown as a star at coordinates (0.98,-1.77). Note that the actual gradient
error at (0,0) and the optimal, is within the 90 degree specification.
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Figure 4.24 Gradient and Stability in the Weight Space

Figure 4.24 also illustrates loop stability. For every weight combination shown, (4.20)
was evaluated for unstable roots. The O’s represent areas in the weight space where the
loop has no unstable roots; areas without O’s have at least 1 unstable root. By inspection, it
is possible to see a union where the feedback loop is stable but the actual gradient is greater
than 90° at 150 Hz ((4.27) is not satisfied) while the conventional gradient is less than 4° ((4.25)
is satisfied). If we choose an initial condition of the weights in this region (-2.8 and 1.3 for
example), the algorithm diverges at 150 Hz but the feedback loops remain stable for some
time. The upper portion of Figure 4.25 illustrates the error signal with time while the lower
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portion shows the increase in amplitude of the 150 Hz tone after control has been applied.
This example illustrates that the conventional interpretation of the plant phase error of
(4.25) is insufficient to ensure convergence to the optimal solution during adaptation.
Equation (4.27) accurately predicts the actual phase error that can be expected during
adaptation.
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Figure 4.25 Gradient Divergence for 4 degrees of Plant Estimation Error
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5 Pulsed Control

5.1Introduction

Most control schemes for the suppression of thermoacoustic instabilities involve fuel
modulation actuators of the on-off type. In the past, these actuators were primarily forced at
the instability frequency [1] but recently, in an effort to reduce the cycle fatigue and required
bandwidth of the actuators, numerous researchers have considered using subharmonic
forcing [2,3]. The main objective of this chapter is to determine whether subharmonic
control is effective due to nonlinear behavior in the thermo-acoustic system or can be
explained by linear analysis. To accomplish this objective, it is necessary to explore the
ramifications of using pulsed actuation, as opposed to linear proportional actuation, in the
control loop. Although the effects on the flame of using pulsed control signals have been
examined [4,5], the analysis of the effect of pulsing on the controlled system has not been
investigated.

We show that from the standpoint of stabilizing the system, only linear analysis is
required and the quantity that determines control effectiveness is the Fourier component of
the actuation signal at the instability frequency. The major ramification of this fact is that
actuators used fot control must have a bandwidth that extends to the instability frequency,
even when pulsed subharmonically. In addition, for the usual case of fixed-amplitude
pulsing it is shown that true stabilization does not occur, but a new, much smaller limit cycle
replaces the original limit cycle. The amplitude of this new limit cycle can be predicted using
linear control theory.

The basic block diagram for the thermo-acoustic interaction that can cause large
pressure oscillations in continuous combustors is shown in Figure 5.1. The acoustics of the
combustor interact with the nonlinear heat release dynamics in a feedback arrangement that
is generated by one of several physical instability mechanisms[6]. Under certain operating
conditions, the system becomes unstable and an acoustic oscillation grows until limited by
nonlinear effects, resulting in a stable limit cycle. The goal of the control loop is to stabilize
the system, eliminating the oscillation. In the simplest configuration, the measured acoustic
pressure is phase shifted and fed to an acoustic or fuel actuator. The idea of subharmonic
control is to divide the frequency of the phase-shifted acoustic signal by an integer M,
producing a 1/M subharmonic, which is then fed to an actuator. For example, M = 2
produces a one-half subharmonic, and will have a fundamental frequency of 1/2 of the
instability frequency. In practice, the subharmonic generation is most easily accomplished by
counting zero crossings. At every M" positive-going zero crossing, a trigger pulse is
generated. This pulse is used to trigger a one-shot, which produces a pulse of specified time
duration after every trigger pulse. Thus, the input to the actuator is a pulse train at the
subharmonic period with a specified on-time. Of coutse, the preceding description also
applies to forcing at the input frequency by setting M=1. Proportional fuel injectors are
possible [7], but can be difficult and more costly to use than traditional on-off fuel injectors.
Therefore it is necessary to examine both proportional and fixed height control signals.
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Figure 5.1 - Combustion Block Diagram
5.2 Analysis
5.2.1 Describing Functions

The simplest version of the controller we want to analyze is shown in Figure 5.2.
ZCD is a positive-going zero crossing detector that produces a trigger pulse to a divide-by-M
block which in turn produces a trigger pulse to a one-shot circuit that outputs a single pulse
of duration w seconds. In practice, the zeto-crossing detector will need a hysteresis
characteristic to prevent accidental triggers due to noise. The basic controller is nonlinear
and does not have a useful linearization. No matter how small the input signal, the output
will not behave in a linear manner. However, we are interested in systems whose response is
dominated by a single sinusoidal signal, a limit cycle. These instabilities normally occur at
acoustic resonances and frequencies output by the controller at other than the instability
frequency will be significantly attenuated by the acoustic plant, as they will not correspond to
resonances. Thus, describing function analysis [8], which has traditionally been used to
analyze limit cyding systems, is a natural candidate for a basic analysis of this control system.
In this type of analysis, the nonlinear controller is replaced by a linear gain and phase at the
frequency of excitation. If the input to the controller is Asin(@t) and the output

component at frequency @ is F(4, w)sin(at + ¢(4,w)), then the describing function is the
complex gain given by

F(4,0)

DF =

Zp(4, w)

—p| Delay | | ZCD |} Divide [ p{ One L »
bv M Shot

Figure 5.2 - Pulse Generator Block Diagram

When analyzing the system depicted in Figure 5.1, it must be noted that very little is
known about the nonlinear heat release dynamics, even for simple flames. Even the order of
the linearized model is unknown at present. To proceed, we make the assumption that at
small signal levels the response of the heat release subsystem is dominated by a linear model
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and linear analysis is valid. The experiments that follow are necessary to insure that the
conclusions following from this assumption are observed in practice.

Under this assumption, single-frequency describing function analysis makes sense for
the following reason. If the controller is effective, signal levels will be suppressed and the
thermoacoustic system connected to the controller behaves linearly. Since superposition
holds in the linear regime, an unstable oscillation will be unaffected by a control signal at
other than the instability frequency. Stability can occur only if the controller can generate a
signal at the frequency of the unstable oscillation. Thus, if pulsed control is stabilizing, the
control is achieved through the harmonic of the control signal that corresponds in frequency
with the unstable oscillation frequency. For the subharmonic case, the controller is
effectively emulating a simple phase shift controller by first dividing the input frequency to
generate a subharmonic pulse and then multiplying the frequency, via the harmonics of the
pulsed waveform, to achieve an output at the input frequency.

This mechanism of controller operation means that pulsed control will be less
efficient in terms of actuator power than linear control because enetgy in any harmonics
other than that at the instability frequency will be wasted. Also, although the advantage of
subharmonic forcing is reduced cycling of the actuator, the bandwidth of the actuator must
be sufficient to generate significant enetgy at the oscillation frequency, and hence the
actuator bandwidth must be on the order of the oscillation frequency. There is no real
savings in bandwidth by using subharmonic control. The analysis that follows assumes the
actuator is driven by a square pulse and the system responds to this pulse in a linear manner.
For acoustic actuators, this is a reasonable assumption and thus we use acoustic actuators in
our experimental verifications. For fuel modulation actuation, the input to the acoustic
system is the heat release pulse that results from burning the fuel perturbation. The effects
of diffusion, mixing, and flame shape will cause the heat release pulse to be a distorted
version of the original fuel pulse. To the extent that these effects ate linear, the following
analysis will hold. Significant nonlinearities will introduce additional complexmes that will
need to be considered in future work.

5.2.2 Fixed Height Control Signals

The first case to be considered is one in which the output pulses of the controller
have a fixed amplitude, X and a fixed duration, w, as shown in Figure 5.3.

X

-w/2 w/2 MT,

\'Z

time

Figure 5.3 - Typical Pulse Train

For a sine wave input at frequency o, amplitude 4, and period T, the controller
outputs a pulse train with on-time », height X, and period MT. The Fourier expansion of
this pulse train can be written as

. ko w 7
§2|C,,|sm(—jl—(t— T —E)+ £C, +—2—)

?
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where the coefficients C, are given by

C, = 2}—X—sinc(—}ﬁ]z) .
MT
The magnitude of the harmonic at the oscillation frequency (£=M) is
2wX wMr,  2X w
2Cy, = sinc = sin(— 7 5.1
w = sine(—em) = (77) .1

Two significant conclusions can be drawn from this formula. First, to maximize the
energy at the oscillation frequency for a fixed amplitude pulse (essentially to maximize the
efficiency of the controller), the on-time of the pulse should be »=T/2, or half the period of
the frequency we are trying to control. Previous work with variable duty cycle signals [9] did
not consider the relationship to the Fourier components of the signal. Second, as the order
of the subharmonic, M, increases, the amplitude of the pulse must increase proportionally to
produce the same effect at the oscillation frequency. Thus, as the cycle requirements of the
actuator are reduced, the pulse amplitude produced by the actuator must increase and the
on-time of the actuator should remain constant, if the effect of the actuation is to remain
constant.

The above conclusions also make sense from an energy (Rayleigh criterion)
viewpoint. From this view, the goal of control is to extract sufficient energy from the system
so that oscillations cannot grow and ate instead damped out. To accomplish this, the
controller must provide heat release or positive acoustic forcing during the negative half
cycle of the pressure perturbation. Thus, a pulse on-time of T/2 makes sense in this
context. In addition, if you extract energy only every M’ cycle, then the amount of energy
input by the actuator must increase by a factor of M for the net effect to remain the same.

The describing function of the controller s given by

DF = 2X
AM~n

/4 w
4{5+ ZCy, —co(r+5)}. (5.2)

. W
Sim(—7xw
77

Since the delay, T, is a control variable, any desired phase can be realized with this
controller. If the phase of the controller is fixed at a value that allows stabilization of the
system, then questions about the required gain of the controller can be determined as in
Figure 5.4.
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Figure 5.4 - Describing Function with Fixed Amplitude Pulse Heights

Assuming a linear (proportional actuation) phase-shift controller with the same
phase as the pulsed controller, one can plot the limit cycle amplitude as a function of the
linear controller gain from zero gain until the controller stabilizes the system. Then, plot the
effective linear gain, which is the amplitude of the describing function, as a function of limit
cycle amplitude. Since the describing function gain varies as a constant divided by the limit
cycle amplitude, the gain will approach zero as the limit cycle amplitude approaches infinity,
and the gain will approach infinity as the limit cycle amplitude approaches zero. Two cases
for the describing function gain are shown in Figure 5.4, corresponding to two different
values of the ratio X/.A4, where X, > X,

For the case of height X, where the describing function gain intersects the limit
cycle amplitude curve, there are two possible solutions. One is a limit cycle with amplitude
corresponding to the intersection point and the other corresponds to stabilization of the
system, which will be discussed in the next section. If the limit cycle is already established
before the controller is turned on, it will have an amplitude cotresponding to zeto controller
gain, which is the intersection of the limit cycle curve with the vertical axis. If the controller
is switched on, the limit cycle will have its amplitude reduced to that corresponding to the
intersection point on the graph. The system will not be stabilized. On the other hand, if the
controller and the system are “turned on” simultaneously, the limit cycle will not develop
because the gain of the controller exceeds the gain needed for stabilization. Note that this
will be the case for any controller with fixed pulse amplitude, because the gain always tends
to infinity for small input amplitudes. In practice, if the system is stable, a disturbance can
occur that will increase the oscillation amplitude to a point where the effective control gain is
no longer sufficient for stabilization. In this case, the system will jump to the stable limit
cycle. Similarly, if the system is at the stable limit cycle point, a disturbance could reduce the
amplitude sufficiently to cause a jump to the stabilized condition.

In the second case pictured in Figure 5.4, corresponding to height X, there is no
intersection between the effective gain and the limit cycle curve. The system will always be
stabilized because for any limit cycle amplitude the control gain is greater than the gain
needed to stay at that amplitude. Thus, the oscillation amplitude will be forced to decrease
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with the eventual result that the control gain will become greater than the gain needed for
stabilization. If the limit cycle amplitude curve were actually available for a system, it would
be straightforward to compute values of , X, and M to guarantee stabilization.

A third case, involving two intetsections, is also possible and is pictured in Figure
5.5. One intersection corresponds to a stable limit cycle, meaning that nearby trajectories
will be attracted to the limit cycle solution. The other intersection corresponds to an
unstable limit cycle, meaning that nearby trajectories will be repelled from this limit cycle and
stabilize elsewhere. In practice, an unstable limit cycle cannot be observed, since the
smallest perturbation from this theoretical solution will cause the system to move away from
this solution. If the oscillation amplitude is above the amplitude of the unstable limit cycle,
the gain is such as to cause the system to approach the stable limit cycle. If the amplitude is
below that of the unstable limit cycle, the system will be stabilized.

. a—— Describing Function Gain 1

_ Stable Limit Cycle

Limit Cycle Amplitude
2

Unstable Limit Cycle

\\\
~

Linear Gain

Figure 5.5 - Describing Function with Two Intersections

5.2.3 Ultimate Amplitude with Fixed Forcing

Although the discussion above assumed that if the original limit cycle was no longer
viable the system would be stabilized, this is not strictly true. From a physical perspective, a
fixed height and fixed duration pulse will impart a finite energy into the system. Since
control action is needed to avoid unbounded growth and any control action imparts finite
energy, a stabilized state having zero pressure oscillation is not possible. From a control
point of view, once the effective gain is increased beyond the stabilizing gain, &, the system
will begin to move towards the zero oscillation state causing the effective gain of the
controller to inctease towards infinity. For any system with a pole-zero excess of three or
more (which will include any real control system), increasing the control gain without bound
will eventually cause one or mote poles to go unstable at an ultimate gain denoted by £,
This situation is pictured in the complex plane in Figure 5.6.

When the effective gain increases beyond £,,and a pole becomes unstable, the
pressute oscillation will begin to increase again, causing the effective gain to decrease. This
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process will result in a stable limit cycle such that the effective gain is equal to £,,, leading to

the equaton

X ko 4= 2K )
i kull Mnr
kult , P
\ ...'
kstab
Stabilized — A
ole :
p 7 M Thermoacoustic
Acoustic_w AN — The
pole

Figure 5.6 - Depiction of Pole Movement in the Complex Plane as the Control Gain is Increased

The latter equation shows that the amplitude of the ultimate limit cycle will be
proportional to the pulse height and inversely proportional to the harmonic number M and
the ultimate gain £,,. Thus, although the system is never stabilized to zero, it achieves a
stable limit cycle caused by the pulsed nature of the controller. The amplitude of this limit
cycle can be controlled by the choice of M and perhaps by using a more sophisticated
control design in place of the phase-shifting delay so as to increase the value of 4, In
Figures 5.4 and 5.5, this limit cycle can be pictured as occurring at the intersection of the
describing function curves with a vertical line drawn at &,

Thus, we see that there are two limit cycles to be considered. The first is due to the
thermoacoustic interaction, with its amplitude limited by the nonlinear characteristics of the
heat-release dynamics. The second is due to a high-gain controller, with its amplitude
limited by the nonlinear gain characteristic of the fixed-amplitude control signal. For
maximum effectiveness in eliminating the thermoacoustic limit cycle, it is desirable to
maximize control gain by using M=1. After the system has transitioned to the control-
induced limit cycle, it is desitable to minimize the resulting amplitude by operating at the
highest practical value of M. This leads us to propose the idea of a variable subharmonic
controller, where M=1 is used for initial stabilization and a higher value is used to minimize
the amplitude of the control-induced limit cycle and reduce cycle fatigue of the actuator.

5.2.4 Proportional Control Signals

If the intention is to use pulsed control to drive the system oscillations to zero, then
the amplitude of the output pulses of the controller must be proportional to the controller
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input. This proportionality will enable the effective gain of the controllet to be set between
k., and k,, ensuring stability of the system. In the ideal case, a proportional control would
be represented by a vertical line on the gain-amplitude plots we have been considering. In
reality, there will be some maximum pulse amplitude for the actuator, after which it will
saturate, essentially transitioning to a fixed-height signal for suitably large inputs. This
situation is shown in Figure 5.7. Clearly, the three previous cases we have discussed — zero,
one and two intersections with the limit cycle amplitude curve are possible in the case of a
saturating, proportional actuator. In addition, a case with three intersections is also possible
and is pictured in Figure 5.7. This case exhibits a proportional gain that is less than the
required stabilizing gain. The result is two possible stable limit cycles separated by an
unstable limit cycle.
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Limit Cycle Amplitude

i - ~ —

} >~ ~_ Unstable Limit Cycls ™ —
— e » ‘

Stable Limit Cycles = ‘
I

1

Linear Gain

Figure 5.7 — Describing Function with Proportional Height Pulses

Depending on the nonlinearity of the heat release dynamics, the limit cycle amplitude
curves could exhibit much more complicated behavior than those illustrated in the curves of
the above figures. Thus, cases other than those outlined above are possible, but the previous
analysis should setve to understand these new cases as well.

5.3Controller Implementation

5.3.1 Terminology

In this chapter a subharmonic signal will be referred to as a 1/M x% signal, where M
is the order of the subharmonic and x is the duty cycle of the control signal. Therefore a
1/3 signal will be a subharmonic signal with a pulse every third positive-going zero crossing
of the pressure signal. Note that the duty cycle is the percentage of time that the contro/
signal is high. Therefore a 1/2 25% signal will have the same pulse width as a 1 /1 50%
signal, but will occur only every other period of the limit cycling pressure signal. Examples
of 1/1 and 1/2 signals with equal pulse widths are shown in Figure 5.8.
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Figure 5.8 - Typical Pulsed Control Signals
5.3.2 Explanation of Control Algorithm

The algorithm was written in C and implemented on 2 DSpace DS1103 controller.
The algorithm generates a pulse train in the time domain, which is based on detecting zero
crossings of the input signal, in this case the pressure fluctuation.

Hold Time Contro! Signat
Zero >
Crossing g E
T 3
2 4
2 :
2
Delay L
Time
Pressure
Signal

Figure 5.9 - Control Algorithm Hlustration

As shown in Figure 5.9, the algorithm starts a timer when it sees the previous sample of the
input less than zero and the current sample greater than zero. When this timer reaches the
value “Delay Time,” a user selectable number of samples, it will set the control signal high.
The height of the pulse can be fixed or made proportional to the wave height with a user-
selectable gain. When the pulse is initiated, the hold timer is started. When this timer gets to
the “Hold Time” number of samples, the pulse is ended and the signal goes to the negative
value of the height calculated ptreviously. The algorithm then returns to detecting zero
crossings. When the set number of positive-going zeto crossings M is reached M=21n
Figure 5.9) the delay timer is started again and the next pulse is output.
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5.4 Experimental Results
5.4.1 Experimental Setup

A block diagram of the experimental system is shown in Figure 5.10. The
combustor is a tube that is acoustically closed at the bottom and open at the top. Premixed
methane and air are injected at the bottom and a ceramic honeycomb flame holder is located
at the tube midpoint. The second acoustic mode of the tube, at a frequency near 180Hz,
goes unstable for a wide range of equivalence ratios and flow rates [9]. The pressure
transducer signal in the combustor is filtered before the A/D conversion to eliminate
spurious zero crossings. The D /A output is low-pass filtered to protect the speaker, as a
speaker is not mechanically designed for pulse inputs. However, all harmonics up to and
including the instability frequency are allowed to pass into the combustion system. The
signal is sampled at 10 kHz to allow for as great a resolution as possible in setting the phase
and duty cycle.

&

D]Loudspeaker

Pressure
Transducer
Strain Gage Audio
Amp Amplifier
Cch. 1 HP FFT h.2
Analyzer
Bandpass Lowpass
Filter Filter
160-200 Hz 185 Hz
DSpace
Digital
Controller

Figure 5.10 - Test System Layout
5.4.2 Linear Phase Shifter Results

54.21 Hysteresis Curve
The linear phase shifter simply outputs the input signal after a delay, thus passing all
frequency components of the input (within the sampling rate and filtering constraints).
Experiments were first petformed using a fixed gain linear phase shifter to determine the
optimal phase shift to be used. This phase shift was then used for all subsequent phase shift
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experiments. It was found that a delay of ~288° (45 samples at 10 kHz sampling rate)
produced the best results and the lowest gain for stabilization.

The amplitude of the limit cycle is shown as a function of the linear control gain in
Figure 5.11. Tt was found that it took less gain to maintain stability than to achieve it.
Control is achieved at a gain of 1.34 and lost when the gain drops below 1.16.
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Figure 5.11 - Linear Phase Shifter Hysteresis Curve

5.4.22 Loss of Control at High Gains — Peak Splitting

If the gain of the linear phase shifter is increased past the gain needed for
stabilization, a secondary instability results. Gains above 2.8 resulted in a power spectrum
with a split peak, indicating two potential instabilities evenly spaced around the original
instability frequency. Experimentally it was determined that a gain of 4.2 would cause a
secondary instability. This instability results in 2 new limit cycle that is at a different
frequency than the original limit cycle. Without an accurate mathematical model of the
system it is not possible to know whether this new limit cycle is due to the acoustic pole,
which was stabilized, moving back to instability, or whether one of the bandpass filter poles
in this same frequency band is becoming unstable. Practically, it doesn’t matter.

The peak splitting is because two different poles are going unstable at neatly the
same time. The phenomenon can be seen in Figure 5.12Figure as the gain is increased in
increments of 1.5 from 0 to 4.5. Initially the thermoacoustic limit cycle exists. As the gain is
increased to 1.5, control is achieved, leaving a lightly-damped, noise-excited acoustic peak.
As the gain is further increased to 3.0, peak splitting occurs. The acoustic peak at the
instability frequency is visible, but has been driven further down and two additional peaks
have arisen to either side of it. Finally, at the gain of 4.5, stability is again lost. This
characteristic has been well documented for phase shift controllers [9]. The characteristic is
presented here to fully characterize the linear phase shifter’s effects on the plant.
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Linear Phase Shifter Response, Gain=0.0
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Figure 5.12 - Control Level with Linear Phase Shifter, Various Gains

5.4.3 Validation of the Instability Frequency Hypothesis for Pulsed
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If the mechanism of control in the tube combustor is indeed the component
of the control signal at the instability frequency, we can support this by examining the ratios
of the gains needed to achieve stability for pulse train control signals of various duty cycles
and subharmonic ratios. In the experiments, a pulsed-control signal is generated with a
specified duty cycle and subharmonic ratio that has an amplitude related to the input signal
amplitude by a gain g. The gain is increased until the limit cycle is stabilized. The value of

the gain at stabilization is recorded. The effective control signal gain at the instability
frequency is gF , where F is the Fourier coefficient associated with the frequency
component at the instability frequency (i.e. the Mth coefficient) for a unit-amplitude pulse
train having the specified duty cycle. If control is obtained due to the component of the
control signal at the instability frequency, then the obsetved gains from two experiments
using different duty cycles or subharmonic ratios should be related by g,F, = g,F,. This

implies that the ratio of the gains should equal the inverse of the ratio of the Fourler

coefficients.
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5.4.31 One-Half Subharmonic Control

For the 1/2 signal case, experiments were done at a 25% duty cycle, 17% duty cycle,
and 10% duty cycle. Experiments also were done with a linear phase shifter, and a 1/1
signal with duty cycles of 20%, 34%, and 50%. These duty cycles give pulse widths equal to
the 1/2 signal cases. All tests were done with the same phase shift of the control signal as
determined by the HP analyzer, which monitors the total phase of the control path including
filters, as seen in Figure 5.10.

Experimentally it was determined that the gain required to achieve control was 1.90 for the
1/2 25% case and 1.76 with a 1/1 20% case, giving a ratio of 0.926. The second Fourier
coefficient for a 25% signal is 0.6366, and the first Fourier coefficient of a 20% signal is
0.7354, producing an inverse ratio of 0.866. Therefore, there is a 7.0% ertor between the
observed gain and the expected gain based on the hypothesis. The actual ratios of the gain
of every signal type tested to the gain of every other signal were computed and are shown in
Figure 5.13 as a function of the expected ratios of the gains. The gains for achieving and
losing control were both measured and both corresponding ratios are shown. These will be
different due to the hystetesis of the system. Ideally the points should all lie exactly on the
45° line shown, with the expected ratio equal to the actual ratio. The subharmonic signals
agree very closely when compared to other subharmonic signals, and the fundamental signals
agree very closely when compared to other fundamental signals and the linear phase shifter.
However, there is a slight amount of error between the ratios of subharmonic signals and the
fundamental, as well as the subharmonic signals and the phase shifter. This is most likely
due to non-linear effects in the combustor where it has been observed that a low-frequency
signal, not harmonically related to the limit cycle, injected with a control signal can act to
reduce the gain necessary to control the system. In general, however, the test results agree
closely with the expected results of the linear analysis and appear to vetify the hypothesis
that the limit cycle frequency component of the control signal is responsible for control of
the system and not some nonlinear interaction of the subharmonic frequency component
with the system.
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Figure 5.13 - Actual vs. Expected Ratios for Half-Harmonic Signals

5.4.3.2 One-Third Subharmonic Control

Similar tests were done using a one-third subharmonic control signal. Duty cycles of
8%, 11%, and 16% were tested. These duty cycles have pulse widths equal to those
considered in the previous section. As above, ratios between every case were calculated and
compated to theoretical expectations. The actual and expected ratios are plotted in Figure
5.14. The ratios between gains at different duty cycles for control using both fundamental
frequency control and subharmonic control match very neatly with what is expected. Ratios
between subharmonic and fundamental pulse trains and ratios compared to a linear phase
shifter are somewhat farther away from the expected than in the half-harmonic case. Having
two subharmonic frequency components present seems to enhance the nonlinear effect
noted in 5.4.3.1, requiting even less gain to control the system. Overall, however, the results
are close to expected and appear to verify that the Fourier component at the limit cycling
frequency is the dominant means of control.
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Figure 5.14 - Actual vs. Expected Ratios for Third-Harmonic Signals
5.4.4 Validation of Fixed Pulse Height Analysis

According to the theoty in Section 5.2.2, the pulse height required to stabilize the
system can be calculated from the describing function amplitude given in (2) and the system
response with a linear phase shifter shown in Figure 5.11. For a 1/1 50% signal (M=1,
w/T =0.5) the describing functions for various pulse heights are plotted and superimposed
on the hysteresis curve in Figure 5.15. As can be seen in the plot, pulse heights above 0.8 V
should result in stabilization of the thermoacoustic limit cycle, as thete are no intersections
for pulse heights above 0.8 V. The actual value of the limit cycle with each different control
signal is shown as a line in Figure 5.15, and it can be cleatly seen that the actual level is at the
intersection of the describing function and the linear phase shifter results.

4
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Figure 5.15 - Describing Function Plots Superimposed on Hysteresis Curve

Not pictured in Figure 5.15 are the control-induced limit cycles for each condition,
which exist further to the right where the linear gain is 4.2. Using any control gain where
both intersections exist (thermoacoustic and control-induced), it was fairly easy to move
between the thermoacoustic and control-induced limit cycles. A disturbance created by
interrupting the aitflow at the top of the combustor tube was enough to cause the
combustor to jump from one instability to the other, with no change to the controller. The
farther apart the two limit cycles, the greater the disturbance needed to cause this jump. As
the pulse height increased and the two limit cycles became closer in amplitude, the jump
would occur without providing an external disturbance. In these cases the control-induced
limit cycle was the “dominant” limit cycle.

A plot of the limit cycle amplitude as a function of pulse height is given in Figure
5.16. This plot shows that the transition from the thermoacoustic limit cycle to the control-
induced limit cycle takes place above an amplitude of 0.5 V. Once the system has jumped to
the control-induced limit cycle, it is possible to reduce the pulse height and still remain on
the control-induced limit cycle, taking the lower branch of the figure. For pulse heights
between 0.6 V and 0.8 V an external disturbance would cause the system to temporarily
jump to a thermoacoustic limit cycle and then immediately return to the control-induced
limit cycle. This explains the discrepancy between the break-off point at 0.6 V as shown in
Figure 5.16 and the expected break-off point of 0.8 V shown in Figure 5.15.
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Figure 5.16 - Instability Level for Fixed Pulse Height Controller

The control-induced limit cycles should correspond to a gain of k,,=4.2. Examining
the control-induced limit cycle with a pulse height of 0.9 V, for instance, it is seen that the
maximum level of the limit cycle is 0.276 V. The gain (multiplied by 2 because a 0.9 V
signal was actually used) can then be found to be

2(0.9)
0.276x
The predicted values of k,, for the control-induced limit cycles at all pulse heights are shown
in Figure 5.17. It can be seen that the gain tracks very closely with the expected value of 4.2.

The inaccuracy at the 0.08 V point s likely due to the extremely small amplitude (9 mV) of
the instability and the possibility of noise at this low level.
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Figure 5.17 - Gain of Fixed Pulse Height Controller

Experiments were also done with variable duty cycle, fixed height control signals,
using a subharmonic ratio of one. Note from equation (1) that the Fourier component of
the control signal is periodic, with the maximum value occurring at a duty cycle of 50%.
This means the level of control with a fixed height controller should be maximized with a
duty cycle of 50%, and fall off symmetrically with changes in duty cycle away from 50%.
Thus a 40% duty cycle signal and a 60% duty cycle signal should have exactly the same
results, since the Fourier component at the instability frequency is exactly the same in both
cases.

Experiments were done to verify this. A fixed height signal was input to the system
at 40%, 50%, and 60% duty cycles. The phase shift of the controller was varied until the
frequency of the instability was 186 Hz in each case. As can be seen in Table , the
assumption that the control amplitude is maximized at 50% and that the level is identical at
40% and 60% is verified. The level of suppression goes down at 50%. The increased
amplitude of the control signal at 50% duty cycle causes the amplitude of the ultimate limit
cycle to be larger, in accord with the argument given in Section 5.2.3.

Duty Cycle  Pressure (dbVrms)  Phase Shift (°)  Frequency (Hz)

40% -6.98 65.7 186
50% -5.83 65.7 186
60% -6.96 65.5 186

Table 5.1 - Level of Control with Variable Duty Cycles

5.5Conclusion

This chapter has analyzed the effects of pulsed control, both at the fundamental
(limit cycling) frequency and subharmonic frequencies, on the stabilization of thermo-
acoustic instabilities. The hypothesis that the control effectiveness depends on the
amplitude of the control signal at the instability (input) frequency was argued theoretically
and verified experimentally using acoustic actuators. Methods for determining the pulse
height necessaty to eliminate the thermo-acoustic limit cycle and for calculating the
amplitude of the resulting control-induced limit cycle were derived for fixed-pulse-height
systems and verified experimentally. Finally, based on this theory, a variable-subharmonic
control scheme was proposed that uses fundamental forcing to transition the system from
the thermoacoustic limit cycle to the control-induced limit cycle, and then uses subharmonic
forcing to reduce the level of the control-induced limit cycle, while also reducing the cycles
required of the actuator.

Although we expect the basic ideas presented in this chapter to be useful for
understanding the behavior in more complex, practical combustors, it is understood that
additional complexities arise, such as flame repositioning, that create added challenges to
effective control.
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6 Conclusions

This work has involved the investigation, implementation and testing of three
different types of adaptive algorithms for the suppression of thermoacoustic instabilities and
optimization of combustor performance. The algorithms have different strengths and
weaknesses, but all have proven effective in suppressing thermoacoustic oscillations, and
two of the algorithms will cleatly be useful for the slower task of optimizing combustor
performance.

The pattern search algorithms are the slowest, yet most robust of the algorithms
tested. Since they make no assumptions about the performance surface, they are less likely
to become trapped in local minima and can traverse rough performance surfaces. Thus,
pattern search algorithms are ideal for optimization of combustor performance. What was
pethaps surprising was how well they performed at the more time critical task of stabilizing
thermoacoustic instabilities. As the order of the adapted filters becomes higher, or the
combustor becomes noisiet (more turbulent), it is expected that this class of algorithm might
become too slow for the stabilization task.

The explicit gradient algorithms are faster than the pattern search algorithms because
they assume more smoothness in the performance surface and attempt to move in the best
downhill direction. For rough performance surfaces, however, this could cause problems.
In the case of thermoacoustic oscillations, these algorithms proved very effective in our
expetiments, both with linear and on-off actuation. For noisier combustors, this class of
algorithm will also slow down due to the increased integration time needed. On the positive
side, both explicit gradient and pattern search algorithms require very little a ptiori
information about the process being controlled, which makes them quite robust. In
addition, their digital implementation makes it easy to incorporate constraints so that these
algorithms will never remain in a state that makes the performance worse than the best
ptevious performance achieved.

The filtered-E algorithm was developed to avoid an explicit computation of the
gradient. The gradient is computed using information from a linearized model of the
control to error path. This makes the algorithm much fastet than the other algorithms
considered, as its speed does not depend on an integration interval or scale linearly with the
number of parameters adapted. The algorithm requires more a priori information, which
must be acquired in a real time system identification step prior to starting the algorithm.
This can limit the robustness of the algotithm and probably makes it unsuitable for working
with the rough petformance surfaces that could be encountered with optimizing combustor
performance metrics, such as efficiency. On the other hand, this algorithm should work well
in the noisy environments characteristic of highly turbulent combustots. It was very
effective in suppressing thermoacoustic instabilities in our experiments.

Our work on pulsed control of combustors has shown that there appears to be little
benefit to using subharmonic actuation in terms of reducing the bandwidth required of the
actuator. On the other hand, the reduced cycling of the actuator may be a major benefit.
The variable subharmonic control that we have proposed should be useful not only in
reducing actuator cycles, but also in increasing the achievable suppression when using on-off
actuatots.

Although we have achieved success on the simple combustors we have used for
expetiments, future work must concentrate on validating our techniques on higher power
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liquid-fuel combustors. Some results for the pulsed control of a multi-injector liquid-fuel

combustor have been obtained using the time-averaged-gradient algorithm, but much more
experimental testing needs to be done using both proportional and on-off actuators and all
of our algorithms. In addition, our pulsed-control analysis for subharmonic actuation must

be validated using liquid fuel actuation.
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